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1.0 OBJECTIVE: 
 

 

After going through this unit, you will be able to: 

• understand what Distributed database is. 

• define what is Distributed Database Management System 

• describe features of DDBMS its advantages and disadvantages 

• Illustrate Distributed transparent system 

• Classify Distributed transparent System. 
 

1.1 INTRODUCTION: 
 

 

For appropriate working of any business/organisation, there’s a 

requirement for a well-organised database management system. In the past 

databases used to centralize in nature. But, with the growth of globalization, 

organisations lean towards expanded crosswise the world. 
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Because of this reason they have to choose distributed data instead of 

centralized system. This was the reason concept of Distributed Databases 

came in picture. 

 

Distributed Database Management System is a software system 

that manages a distributed database which is partitioned and placed on 

different location. Its objective is to hide data distribution and appears as 

one logical database system to the clients. 
 

1.2 DISTRIBUTED DATABASE CONCEPT: 
 

 

Distributed Database is database which is not restricted to one 

system only. It is a group of several interconnected databases. These are 

spread physically across various locations that communicate through a 

computer network. Distributed Database Management System (DDBMS) 

manages the distributed database and offers mechanisms so as to make the 

databases clear to the users. In these systems, data is intentionally 

distributed among multiple places so that all computing resources of the 

organization can be optimally used. 

1.2.1. Definition of Distributed Databases and Distributed Database 

Management System (DDBMS) 

The concept that is most important to the DDBMS is location 

clearness, meaning the user should be unaware of the actual location of data. 

 

“A distributed database management system (DDBMS) can be 

defined as the software system that permits the management of the 

distributed database and makes the distribution transparent to the users.”:- 

M. Tamer Özsu 

 

A Distributed Database Management System allows end users or 

application programmers to view a pool of physically detached databases as 

one logical unit. In another word, we can say distributed database is, where 

different data stored among multiple locations but connected via network, 

and for user it represent as a single logical unit. 

 

 

 

 

 

 

 

 

 

 

 

 

Distributed Database Management System 
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1.2.1.1 Features of Distributed Database Management System 

Some features of Distributed Database Management system are as 

follows: 

• DDBMS software maintain CRUD (create, retrieve, Update, 
Delete) functions. 

• It covers all application areas where huge volume of data are 

processed and retrieved simultaneously by n number of users. 

• It ensure that data modified at any location update universally. 

• It ensures confidentiality and data integrity which is important 

feature in transaction management. 

• It can handle heterogeneous data platforms. 

 
1.2.1.2 Advantages of Distributed Database Management System: 

Some of the advantages of DDBMS are as follows: 

• Reliable: 

Incase of centralized DBMS if database fails entire system comes to 

a halt whereas in DDBMS when a component fails may be reduce 

performance but it will not stop fully. 

 
• Easy Expansion 

In centralized database system if system needs to be expanded, the 

implementation require extensive efforts and interruption in the 

existing functionality. However in DDBMS no disturbance in 

current functioning. 

 
• Faster Response 

In centralized database all queries are passing through central data 

repository because of that response time is more although in 

DDBMS data is distributed in well-organized, so it runs faster 

response on queries. 

 
1.2.1.3 Disadvantages of Distributed Database Management System: 

• Complex and Expensive 

DDBMS provides data transparency and work on different sites so 

it may require complex and expensive software for proper working. 

• Overheads 

Simple and complex operation and queries may require large 

communication and calculation. Responsiveness is largely 

dependent upon appropriate data distribution. Improper data 

distribution often leads to slow response to user requests. 

• Integrity 

As data is on multiple sites it may create problem in updating data 

and maintaining data integrity. 
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1.2.2. Reasons to Boosting DDBMS 

The following Reasons inspire moving towards DDBMS − 

• Distributed Nature of Structural Units – Now a days most 

organizations are partitioned into several units that are physically 

scattered over the world. Each unit needs its own set of local data. 

Thus, the total database of the organization converts into 

distributed. 

• Data sharing Need −The several organizational divisions often 

need to interact with each other and share data and resources. This 

demands common databases or simulated databases that should be 

used in a coordinated manner. 

• Provision for OLTP and OLAP–Online Analytical Processing 

(OLAP) and Online Transaction Processing (OLTP) works on 

diversified systems. Distributed database systems supports and 

both OLAP and OLTP. 

• Database Retrieval − One of the common methods used in 

DDBMS is imitation of data across different locations. Replication 

of data spontaneously helps in data recovery if database in any site 

is broken. Users can access data from other sites while the damaged 

site is being rebuilt. Thus, database disaster may convert 

inconspicuous to users. 

• Useful in Multiple Application Software − Most organizations 

use a variant of application software and each is having different 

database support. DDBMS provides an identical functionality for 

using the same data among diversified platforms. 

 

1.2.3 Databases Types: 

 

1.2.3.1. Homogeneous Database: 

In a homogeneous database, all diverse sites collect data identically. 

At all the sites same operating system, database management system and 

the data structures used is being used. Therefore, they are easy to manage. 

 
1.2.3.2 Heterogeneous Database: 

In a heterogeneous distributed database, different sites can use 

dissimilar schema and software that can lead to glitches in transactions and 

query processing. Also, a particular site might be completely uninformed of 

the other sites. Diverse computers may use a different operating system, 

different database application. They possibly will even use changed data 

models for the database. Therefore, conversions are compulsory for different 

sites to interconnect. 
 

1.3 DISTRIBUTED TRANSPARENT SYSTEM: 
 

 

One of the property of Distributed Database Management System is 

Distributed transparent system. Because of this feature internal details of 
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the distribution is hidden from the users. DDBMS hides all the distributed 

complexities and allow users to feel that they are working on single and 

centralized database. 

 
 

Different Layers of transparencies 
 

1.3.1 Levels of Distributed Transparent System: 

DDBMS is supporting transparency at three levels: 

 
1.3.1.1 Fragmentation Transparency 

In Fragmentation transparency, fragments are created to store the 

data in distributed wayand should stay transparent. In this all the data 

administration work necessarily control by the system, not by the user. In 

this job, when a user sets a query, the global query is distributed in many 

sites to get data from fragments and this data is place together at the end to 

produce the result. 

 
1.3.1.2 Location Transparency 

Location transparency confirms that the user can fire query on any 

relation or fragment of a relation like they are stored locally on user’s place. 

But the table or its fragments are kept at isolated site in the distributed 

database system, should be completely unaware to the user. The address 

and access mechanism of the remote site are completely hidden. 

 

In order to integrate location transparency, DDBMS must have 

access to restructured and perfect data dictionary and DDBMS directory 

which contains the details of locations of data. 

 
1.3.1.3 Replication Transparency 

Replication transparency certifies that duplication of databases are 

concealed from the users. It permits users to query upon a relation as if only 

a single copy of the table is in place. 

 

Replication transparency is connected with concurrency 

transparency and failure transparency. At any time a user updates a data 

element, the update is replicated in all the replicas of the table. Though, 
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this process should not be identified to the user. This is known as 

concurrency transparency. 

 

In case of let-down of a site, the user can still progress with his 

queries using replicated copies without any information of failure then this 

is failure transparency. 
 

1.4 SUMMARY 
 

 

Distributed Database Management System (DDBMS) software 

which manages number of databases raised at different locations and 

connected with each other through a computer network. It offers 

mechanisms so that the delivery remains unaware to the users, who see the 

database as a single database. Its internal details hidden from users with 

transparency feature. 
 

1.5 LIST OF REFERENCES AND BIBLIOGRAPHY AND 

FURTHER READING 
 

 

• Principles of Distributed Database Systems; 2nd Editied By M. Tamer 
Ozsu and Patrick Valduriez, Person Education Asia. 

• Distributed Database; Principles & Systems By Publications, Stefano 

Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions 

(1984) 

• https://cs.uwaterloo.ca/~tozsu/publications/distdb/distdb.pdf 

• https://www.tutorialspoint.com/distributed_dbms/index.htm 

• https://www.geeksforgeeks.org/distributed-database-system/ 
 

1.6 MODEL QUESTIONS: 
 

 

1. Explain Distributed Database Management System? Where we can use 

it instead of DBMS? 

2. Write and explain problem areas of distributed data base system. 

3. Write advantages and disadvantages of DDBMS. 

4. What is Distributed Transparent System? Explain its types. 

5. Explain reasons for advancement of DDBMS. 

6. Write a short note on: 

• Fragmentation Transparency 

• Location Transparency 

• Replication Transparency 

 

❖❖❖❖ 

http://www.tutorialspoint.com/distributed_dbms/index.htm
http://www.geeksforgeeks.org/distributed-database-system/
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DDBMS ARCHITECTURE 

 

 

Unit Structure 

2.0 Objective 

2.1 Introduction 

2.2 DBMS standardization 

2.3 DDBMS Architecture 

2.3.1 Factors for DDBMS Architecture 

2.3.1.1. Distribution 

2.3.1.2. Autonomy 

2.3.1.3. Heterogeneity 

2.4 Architectural models of Distributed DBMS 

2.4.1 Client-Server Architecture 

2.4.2 Peer- to-Peer Architecture 

2.4.2.1 Global, Local, External, and Internal Schemas 

2.4.3 Multi - DBMS Architectures 

2.5 Summary 

2.6 List of References and Bibliography and further Reading 
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2.0 OBJECTIVES 
 

 

After going through this Chapter, you will be able to: 

• understand Distributed database management system architecture 

• define what is Global, Local, External, and Internal Schemas 

• describe different architectural model for DDBM 
 

2.1 INTRODUCTION 
 

 

In any system architecture defines its structure. This means that the 

components of the system are identified, the purpose of each element is 

specified, and the interrelationships and interactions among these 

components are defined. The specification of the architecture of a system 

requires identification of the various units, with their connections and 

relationships, in terms of the data and control flow over the system. 
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2.2 DBMS STANDARDIZATION 
 

Data standardization is the acute method of fetching data into a 

collective layout that allows for combined research, large-scale analytics, 

and sharing of refined tools and procedures 
 

2.3 DDBMS ARCHITECTURE 
 

 

Database systems comprise of complex data structures. Thus, to 

make the system efficient for retrieval of data and reduce the complexity 

of the users, developers use the method of Data Abstraction. 

 
2.3.1. Factors for DDBMS Architecture: 

DDBMS architectures are commonly developed dependent on three 

factors – 

 

2.3.1.1. Distribution–Itstates the physical dispersal of data crosswise the 

different sites. Autonomy refers to the distribution of control, the 

distribution aspect of the classification deals with data. The user sees the 

data as one logical group. There are a numeralways DBMS have been 

distributed. We abstract these alternatives into two classes: 

 

• client/server distribution 
• peer-to-peer distribution (or full distribution). 

 
2.3.1.2 Autonomy 

Autonomy, in this perspective, refers to the distribution of 

mechanism, not of data. It identifies the distribution of regulator of the 

database system and the degree to which each component DBMS can work 

independently. Autonomy is a function of a quantity of factors such as 

whether the module systems interchange information, whether they can 

independently accomplish transactions, and whether one is certified to 

modify them. Requirements of an autonomous structure have been stated as 

follows: 

 
• The local procedures of the individual DBMSs are not affected by 

their involvement in the distributed system. 

• The method in which the individual DBMSs develop queries and 

optimize them should not be affected by the accomplishment of global 
queries that access multiple databases. 

• System regularity or operation should not be negotiated when individual 
DBMS join or leave the distributed system. 

On the other hand, the proportions of autonomy can be stated as follows: 

 

Design autonomy: Individual DBMS are permitted to use the data models 

and transaction management systems that they desire. 
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• Communication autonomy: To each of the discrete DBMS is free to 

make its own decision as to what type of information it wants to offer 

to the other DBMS or to the software that controls their global 

execution. 

• Execution autonomy: Each DBMS can implement the transactions that 

are submitted to it in any way that it wants to. 

 
2.3.1.3. Heterogeneity– It refers to the uniformity or variation of the data 

models, system tools and databases. Heterogeneity may happen in various 

forms in distributed systems, ranging from hardware heterogeneity and 

dissimilarities in networking protocols to distinctions in data managers. 

Representing data with different modelling tools creates heterogeneity 

because of the inherent expressive powers and limitations of individual data 

models. Heterogeneity in query languages not only involves the use of 

completely different data access paradigms in different data models (set-at-

a-time access in relational systems versus record-at-a-time access in some 

object-oriented systems), but also covers differences in languages even 

when the individual systems use the same data model. Although SQL is now 

the standard relational query language, there are many different 

implementations and every vendor’s language has a slightly different 

flavour. 
 

DBMS Implementation Alternatives 
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2.3 ARCHITECTURAL MODELS OF DISTRIBUTED 

DBMS: 
 

 

2.4.1 Client-Server Architecture: 

 

Client-Server architecture is a two-level architecture where the 

functionality is distributed into servers and clients. The server functions 

mainly comprise data management, query handling, transaction 

management and optimization. Client functions contain mainly user 

interface. Nevertheless, they have some functions resembling consistency 

checking and transaction management. 

 

The two different types of clients – server architecture are as follows: 

 

• Single Server Multiple Client 
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• Multiple Server Multiple Client: 

 

 
 

2.4.2 Peer- to-Peer Architecture for Distributed DBMS 

In this systems, each peer actions both as a client and a server for 

instructing database services. The peers share their source with other peers 

and co-ordinate their actions. 

 

This architecture in general has four levels of schemas − 

 

2.4.2.1 Global, Local, External, and Internal Schemas: 

• Global Conceptual Schema –Global Conceptual Schema represents 

the global logical view of data. It represents the logical explanation of 

entire database as if it is not circulated. This level encloses definitions 

of all units, relationships among entities and security and integrity facts 

of whole databases kept at all sites in a distributed system. 

• Local Conceptual Schema –Local Conceptual Schema Show logical 

data organization at individual location. 

• Local Internal Schema –Local Internal Schema represents physical 

record at each site. 

• External Schema –External Schema Describes user’s vision of facts 

and figures. 
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2.4.3 Multi - DBMS Architectures 

This is an integrated database system formed by a collection of 

two or more autonomous database systems. 

 

Multi-DBMS can be expressed through six levels of schemas − 

• Multi-database View Level − Describes multiple user views including 

of subsets of the integrated distributed database. 

• Multi-database Conceptual Level − Shows integrated multi- database 

that comprises of global logical multi-database structure definitions. 

• Multi-database Internal Level − Illustrates the data distribution 

across different sites and multi-database to local data mapping. 

• Local database View Level − Give a picture of public view of local 

data. 

• Local database Conceptual Level − Describes local data organization 

at each site. 

• Local database Internal Level − Shows physical data organization at 

each site. 
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There are two design alternatives for multi-DBMS − 

 
• Model with multi-database conceptual level. 

 

 

• Model without multi-database conceptual level. 
 

 

 

 

 
_ 



14  

 

 

2.5 SUMMARY 
 

There is different types of distributed databases. Distributed 

databases can be classified into homogeneous and heterogeneous databases 

having further divisions. Distributed architecture can be classified in various 

types namely client – server, peer – to – peer and multi – DBMS. 
 

2.5 LIST OF REFERENCES AND BIBLIOGRAPHY 

AND FURTHER READING 
 

 

• https://www.csitweb.com/distributed-dbms-features-needs-and- 

architecture/ 
• https://www.ohdsi.org/data-standardization/ 
• Principles of Distributed Database Systems; 2nd Editied By M. Tamer 

Ozsu and Patrick Valduriez, Person Education Asia. 
 

2.7 MODEL QUESTIONS: 
 

 

1. What is Distributed Database Management System Architecture? 

Explain 

2. Explain different architectural model for DDBMS 

3. Explain Peer- to-Peer Architecture for Distributed DBMS. Write Short 

Notes on the following: 

• Global Schema 
• Local Schema 
• External Schema 
• Internal Schemas 

 

 
❖❖❖❖ 

http://www.csitweb.com/distributed-dbms-features-needs-and-
http://www.ohdsi.org/data-standardization/
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DISTRIBUTED DATABASE DESIGN 

 
Unit Structure 
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3.5 Summary 

3.6 List of References and Bibliography and further Reading 

3.7 Model Questions 
 

3.0 OBJECTIVES 
 

 

After going through this Chapter, you will be able to: 

• understand Design of Distributed System 
• Know Top-down and Bottom-up Strategies of Database Design 
• describe Fragmentation and Allocation and replication of fragments 
• gain knowledge about Query processing and Query Optimization 

 

3.1 INTRODUCTION 
 

 

The design of a distributed computer system contains making 

conclusions on the placement of data and programs through the sites of a 

computer network, as well as probably designing the network itself. In 

Distributed DBMS, the distribution of applications includes two things: 

• Distribution of the distributed DBMS software 
• Distribution of the application programs that run on it. 

 

3.2 DESIGN PROBLEM OF DISTRIBUTED SYSTEMS 
 

 

The distributed information system is defined as “a number of 

interdependent computers linked by a network for sharing information 

among them”. A distributed information system comprises of multiple 

independent computers that transfer or exchange information via a 

computer network. 
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• Heterogeneity: 
Heterogeneity is functional to the network, computer hardware, 

operating system and execution of different developers. A crucial 

component of the heterogeneous distributed structure client-server 

environment is middleware. Middleware is a set of facilities that permits 

application and end-user to interrelate with each other across a 

heterogeneous distributed system. 

 
• Openness: 

The openness of the distributed system is determined mainly by the 

point to which new resource-sharing facilities can be made offered to the 

users. Open systems are considered by the fact that their key interfaces are 

circulated. It is based on a uniform communication tool and published 

interface for access to pooled resources. It can be built from varied hardware 

and software. 

 
• Scalability: 

Scalability of the system should persist efficient even with a 

important increase in the number of operators and resources coupled. 

 
• Security: 

Security of information system has three mechanisms 

confidentially, integrity and availability. Encryption defends shared 

resources, preserves delicate information secrets when communicated. 

 
• Failure Handling: 

When some errorsarise in hardware and the software suite, it may 

produce incorrect results or they may stop before they have completed the 

predicted computation so corrective techniques should to implement to 

handle this case. Failure control is challenging in distributed systems 

because the let-down is incomplete i.e. some components fail while others 

come to an end. 

 
• Concurrency: 

There is a chance that several users will attempt to access a common 

resource at the similar time. Multiple users create requests for the same 

resources, i.e. read, write, and update. Each source must be safe in a parallel 

environment. Any item that signifies a shared resource a distributed system 

must confirm that it operates properly in a concurrent setting. 

 
• Transparency: 
Transparency confirms that the distributed system should be observed as a 

single object by the users or the application programmers somewhat than 

the pool of autonomous systems, which is work together. The user should 

be uninformed of where the services are situated and the transmitting from 

a local machine to anisolated one should be transparent. 
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3.3 DESIGN, STRATEGIES (TOP-DOWN, BOTTOM-UP) 
 

It has been recommended that the group of distributed systems can 

be scrutinized along three scopes 

1. Level of Sharing 

2. Behaviour of access forms 

3. Level of information on access pattern behaviour 

 

To follow all extents some proper method has to be there to grow 

distributed database design. There are two methods for developing any 

database, the top-down method and the bottom-up method. Although these 

approaches appear completely different, they share the mutual goal of 

employing a system by relating all of the communication between the 

processes. 

 

3.3.1 Top-down design Strategy 

 

The top-down design structure starts from the common and transfers 

to the specific. In other words, you start with a universal idea of what is 

required for the system and then work your method down to the more 

specific particulars of how the system will work together. This process 

contains the identification of diverse entity types and the definition of each 

entity’s characteristics. 

 

3.3.2 Bottom – up design Strategy 

 

The bottom-up approach begins with the specific details and moves 

up to the general. This is complete by first recognizing the data elements 

and then alliance them collected in data sets. In other words, this technique 

first identifies the aspects, and then groups them to form objects. 
 

3.4 FRAGMENTATION 
 

 

Data fragmentation is a procedure used to break up entities. The item 

might be a user’s database, a system database, or a table. It permits you to 

breakdown a single object into two or more sectors, or fragments. Each 

fragment can be put in storage at any site over a computer network. In 

designing a scattered database, you must decide which portion of the 

database is to be put in storage where. One method used to break up the 

database into logical entities called fragments. Facts about data 

fragmentation is kept in the distributed data catalog(DDC), from which it 

is retrieved by the TP to process user requests. Fragmentation information 

is deposited in a distributed data catalogue which the dealing out computer 

uses to process a user's demand. 
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3.4.1 Data Fragmentation Strategies: 

Data fragmentation strategies, are established at the table level and 

comprise of dividing a table into logical fragments. There are three forms 

of data fragmentation strategies: horizontal, vertical, and mixed. 

 
3.4.1.1 Horizontal fragmentation 

This kind of fragmentation refers partition of a relation into 

fragments of rows. Each fragment is kept at a different workstation or node, 

and each fragment comprises unique rows. Each horizontal fragment may 

have a changed number of rows, but each fragment must have the identical 

attributes. 
 

 

3.4.1.2 Vertical fragmentation 

 

This type of fragmentation refers to the partition of a relation into 

fragments that contain a collection of attributes. Each vertical fragment 

must have the same number of rows, but can have dissimilar attributes 

depending on the key. 
 

 

3.4.1.3 Mixed fragmentation 

This type of fragmentation is a two-step procedure. First, horizontal 

fragmentation is completed to obtain the essential rows, then vertical 

fragmentation is done to distribute the attributes between the rows. 
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3.5 ALLOCATION AND REPLICATION OF 

FRAGMENTS 
 

 

3.5.1 Data Allocation 

Data allocation is a procedure of deciding where to accumulate the 

data. It also comprises a decision as to which data is stored at what location. 

Data provision can be centralised, partitioned or replicated. 

 
3.5.1.1. Centralised 

The entire database is stored at one place. No distribution happens. 

 

3.5.1.2 Partitioned 

The database is distributed into several fragments that are deposited at 

numerous sites. 

 
3.5.1.3 Replicated 

Copies of one or added database fragments are kept at several sites. 

 

3.5.2 Data Replication 

 

Data replication is the storage of data replicas at numerous sites on 

the network. Fragment copies can be stored at several site, thus increasing 

data availability and reply time. Replicated data is subject to a common 

consistency rule. This rule involves that all replicas of the data fragments 

must be same and to ensure data consistency among all of the imitations. 

 

Although data replication is favourable in terms of availability and 

response periods, the maintenance of the replications can turn into complex. 

For example, if data is simulated over multiple sites, the DDBMS needs to 

decide which copy to access. For a query process, the nearest copy is all that 

is necessary to satisfy a transaction. Though, if the operation is an update, 

at that time all copies must be selected and restructured to satisfy the 

common consistency rule. 

 

A database can be moreover fully replicated, partially replicated or 

not replicated. 

 
3.5.2.1 Full replication 

Stores multiple copies of each database fragment at various sites. 

Fully replicated databases can be unlikely because of the amount of 

overhead forced on the system. 

 
3.5.2.2 Partial replication 

Stores multiple copies of some database fragments at multiple sites. 

Most DDBMS can hold this type of replication precise well. 

 
3.5.2.3 No replication 

Stores each database section at a single site. No repetition arises. 
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Data replication is mainly useful if usage frequency of remote data 

is great and the database is fairly huge. Another advantage of data 

replication is the opportunity of restoring lost data at a specific site. 
 

3.6 QUERY PROCESSING OVERVIEW 
 

 

A Query processing in a distributed database management system 

needs the transmission of data among the computers in a network. A 

distribution approach for a query is the ordering of data diffusions and local 

data processing in a database system. Usually, a query in Distributed DBMS 

entails data from multiple sites, and this need for data from different sites is 

termed the transmission of data that causes communication costs. Query 

processing in DBMS is unlike from query processing in centralized DBMS 

due to this communication cost of data transmission over the network. The 

transmission cost is small when sites are joined through high-speed 

Networks and is pretty significant in other networks. 

 

In a distributed database system, handling a query comprises of 

optimization at both the world-wide and the local level. The query move 

in the database system at the client or supervisory site. Here, the user is 

legalised, the query is checked, translated, and enhanced at a global level. 

 

The architecture can be signified as − 

 
 

Mapping Global Queries into Local Queries 

The procedure of mapping global queries to local ones can be 

recognised as follows − 

• The tables essential in a global query have fragments distributed 

crosswise multiple sites. The local databases have data only about limited 

data. The supervisory site uses the global data dictionary to collect 

information about the distribution and recreates the global vision from the 

fragments. 
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• If there is no duplication, the global optimizer tracks local queries 

at the sites where the fragments are kept. If there is replication, the global 

optimizer selects the site based upon communication cost, workload, and 

server speed. 

 

• The global optimizer produces a distributed execution proposal so 

that least amount of data allocation occurs across the sites. The plan shapes 

the location of the fragments, order in which query steps wishes to be 

executed and the processes involved in transferring transitional results. 

 

• The local queries are optimized by the local database servers. 

Finally, the local query effects are merged together through blending 

operation in case of horizontal fragments and join process for vertical 

fragments. 
 

3.7 QUERY OPTIMIZATION 
 

 

Distributed query optimization needs evaluation of anenormous 

number of query trees each of which produce the necessary results of a 

query. This is primarily due to the occurrence of large volume of replicated 

and fragmented data. Hence, the goal is to find an optimal solution instead 

of the finest solution. 

 

The main concerns for distributed query optimization are − 

• Optimal consumption of resources in the distributed system. 
• Query trading. 

• Decrease of solution space of the query. 

 
3.7.1 Optimal Utilization of Resources in the Distributed System 

A distributed system has a number of database servers in the various 

sites to perform the actionsbelong to a query. Following are the approaches 

for optimal resource utilization − 

• Operation Shipping − In operation shipping, the process is run at 

the location where the data is kept and not at the client site. The results 

are then transported to the client site. This is applicable for operations 

where the operands are presented at the same site. i.e. Select and Project 

operations. 

• Data Shipping − In data shipping, the facts fragments are 

transported to the database server, where the processes are executed. This 

is used in procedures where the operands are distributed at diverse sites. 

This is also suitable in systems where the communication overheads are 

low, and local processors are abundant slower than the client server. 

• Hybrid Shipping − This is a mixture of data and operation 

shipping. At this point, data fragments are transmitted to the high-speed 

processors, where the process runs. The results are then lead to the client 

site. 
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3.7.2 Query Trading 

In query trading system for distributed database systems, the 

controlling/client site for a dispersed query is called the buyer and the 

locations where the local queries execute are entitled sellers. The buyer 

expresses a number of options for choosing sellers and for restructuring the 

global results. The goal of the buyer is to reach the optimal cost. 

 

The algorithm jumps with the buyer allocating sub-queries to the 

vender sites. The best plan is created from local improved query plans 

proposed by the sellers joined with the communication cost for renovating 

the final result. Once the global optimum plan is framed, the query is 

performed. 

3.7.3 Reduction of Solution Space of the Query 

Optimal solution normally involves reduction of clarification space 

so that the cost of query and data relocation is reduced. This can be attained 

through a set of experimental rules, just as heuristics in centralized 

structures. 

Some of the rules are as follows: 

• Implement selection and projection tasks as early as promising. This 

eases the data flow over communication web. 

• Streamline operations on horizontal fragments by removing selection 

conditions which are not applicable to a particular site. 

• In case of join and union procedures comprising of fragments sited in 

multiple sites, transfer fragmented data to the site where utmost of the 

data is present and implement operation there. 

• Use semi-join process to qualify tuples that are to be combined. This 

decreases the amount of data relocation which in turn reduces 

communication cost. 

• Combine the common leaves and sub-trees in a dispersed query tree. 
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3.5 SUMMARY 
 

The improvement in technology has opened the locks for unlimited 

volumes of data to transfer into the system. Distributed database technology 

is certainly one of the key growths in the field of database systems. Though, 

with the remarkable amount of data driving in from various sources and in 

many formats, it may become relatively a difficult task for a business to 

stock, process and manage this data. Choosing the services of a database 

expansion company that provides tradition database development solutions 

provider may support to meet the specific experiments of the business by 

keeping data well-organized, protected and easily accessible for approved 

users. 
 

3.6 LIST OF REFERENCES AND BIBLIOGRAPHY 
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3.7 MODEL QUESTIONS 
 

 

1. Explain Design problem of distributed systems. 

2. What is Query Optimization? Explain Types. 

3. Explain Query Processing. Differentiate Global Queries into Local 

Queries. 

4. Explain Data Fragmentation Procedure. 

5. Explain Design Problem of Distributed System. 

 

 

 

❖❖❖❖ 

http://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distribute
http://www.myreadingroom.co.in/notes-and-studymaterial/65-
http://www.geeksforgeeks.org/design-issues-of-distributed-system/
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4.4.5 I/O Parallelism (Data Partitioning) 
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4.4.12Unit End Exercises 
 

4.1.0 OBJECTIVES 
 

 

In this chapter you will learn about: 

 

⮚ What four properties of transactions does a DBMS guarantee? 

⮚ Why does a DBMS interleave transactions? 

⮚ What is the correctness criterion for interleaved execution? 

⮚ What kinds of anomalies can interleaving transactions cause? 

⮚ How does a DBMS use locks to ensure correct interleaving? 

⮚ What is the impact of locking on performance? 

⮚ What SQL commands allow programmers to select transaction 
characteristics and reduce locking overhead? 

⮚ How does a DBMS guarantee transaction atomicity and recovery from 
system crashes? 

 

4.1.1 INTRODUCTION 
 

 

Often, a collection of several operations on the database appears to 

be a single unit from the point of view of the database user. For example, a 

transfer of funds from a checking account to a savings account is a single 

operation from the customer’s standpoint; within the database system, 

however, it consists of several operations. 

 

Clearly, it is essential that all these operations occur, or that, in case 

of a failure, none occur. It would be unacceptable if the checking accounts 

were debited but the savings account not credited. Collections of operations 

that form a single logical unit of work are called transactions. A database 

system must ensure proper execution of transactions despite failures—

either the entire transaction executes, or none of it does. Furthermore, it 

must manage concurrent execution of transactions in a way that avoids 

the introduction of inconsistency. In our funds-transfer example, a 

transaction computing the customer’s total balance might see the checking-

account balance before it is debited by the funds-transfer transaction, but 

see the savings balance after it is credited. As a result, it would obtain an 

incorrect result. In this chapter, we cover the concept of 
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the foundation for concurrent execution and recovery from system failure 

in a DBMS. 
 

4.1.2 TRANSACTION MANAGEMENT 
 

 

A transaction is defined as anyone of a user program in a DBMS and 

differs from an execution of a program outside the DBMS (e.g., a C program 

executing on Unix) in important ways. (Executing the same program several 

times generates several transactions.) For performance reasons interleave 

the actions of several transactions. However, to give users a simple way to 

understand the effect of running their programs, the interleaving is done 

carefully to ensure that the result of a concurrent execution of transactions 

is nonetheless equivalent (in its effect on the database) to some serial, or 

one-at-a-time, execution of the same set of transactions, How the DBMS 

handles concurrent executions is an important aspect of transaction 

management and the subject of concurrency control. A closely related issue 

is how the DBMS handles partial transactions, or transactions that are 

interrupted before they run to normal completion, The DBMS ensures that 

the changes made by such partial transactions are not seen by other 

transactions. How this is achieved is the subject of crash recovery. 
 

4.1.3 DEFINITION AND EXAMPLES 
 

 

A transaction is a unit of program execution that accesses and 

possibly updates various data items. Usually, a transaction is initiated by a 

user program written in a high-level data-manipulation language (typically 

SQL), or programming language (for example, C++, or Java), with 

embedded database accesses in JDBC or ODBC. A transaction is delimited 

by statements (or function calls) of the form begin transaction and end 

transaction. The transaction consists of all operations executed between 

the begin transaction and end transaction. 

 

The data items in our simplified model contain a single data value 

(a number in our examples). Each data item is identified by a name (typically 

a single letter in our examples, that is, A, B, C, etc.). We shall illustrate the 

transaction concept using a simple bank application consisting of several 

accounts and a set of transactions that access and update those accounts. 

Transactions access data using two operations: 

 

• read(X), which transfers the data item X from the database to a variable, 

also called X, in a buffer in main memory belonging to the transaction that 

executed the read operation. 

 

• write(X), which transfers the value in the variable X in the main-memory 

buffer of the transaction that executed the write to the data item X in the 

database. 
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It is important to know if a change to a data item appears only in 

main memory or if it has been written to the database on disk. In a real 

database system, the write operation does not necessarily result in the 

immediate update of the data on the disk; the write operation may be 

temporarily stored elsewhere and executed on the disk later. For now, 

however, we shall assume that the write operation updates the database 

immediately. Let Ti be a transaction that transfers $50 from account A to 

account B. This transaction can be defined as: 

 
 

4.1.4 FORMALIZATION OF A TRANSACTION 
 

 

Characterization 

⮚ Data items that a given transaction 

• reads: Read Set (RS) 

• writes: Write Set (WS) 

• they are not necessarily mutually exclusive 
• Base Set (BS): BS = RS Ç WS 

⮚ Insertion and deletion are omitted, the discussion is restricted to static 
databases 
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2.1.5 ACID PROPERTIES 
 

 

The concept of database transactions to recapitulate briefly, a 

transaction is an execution of a user program, seen by the DBMS as a series 

of read and write operations. A DBMS must ensure four important 

properties of transactions to maintain data in the face of concurrent access 

and system failures: Users should be able to regard the execution of each 

transaction as atomic: Either all actions are carried out or none are. Users 

should not have to worry about the effect of incomplete transactions (say, 

when a system crash occurs). 

 

Each transaction, run by itself with no concurrent execution of other 

transactions, must preserve the consistency of the database The DBMS 

assumes that consistency holds for each transaction. Ensuring this property 

of a transaction is the responsibility of the user. 

 

Users should be able to understand a transaction without considering 

the effect of other concurrently executing transactions, even if the DBMS 

interleaves the actions of several transactions for performance reasons. This 

property is sometimes referred to & isolation. Transactions are isolated, or 

protected, from the effects of concurrently scheduling other transactions. 

 

Once the DBMS informs the user that a transaction has been 

successfully completed, its effects should persist even if the system crashes 

before all its changes are reflected on disk. This property is called durability. 

The acronym ACID is sometimes used to refer to these four properties of 

transactions: atomicity, consistency, isolation and durability. We now 

consider how each of these properties is ensured in a DBMS. 

 

Atomicity: Suppose that, just before the execution of transaction Ti, 

the values of accounts A and B are $1000 and $2000, respectively. Now 

suppose that, during the execution of transaction Ti, a failure occurs that 

prevents Ti from completing its execution successfully. Further, suppose 

that the failure happened after the write (A) operation but before 
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the write (B) operation. In this case, the values of accounts A and B reflected 

in the database are $950 and $2000. The system destroyed $50 as a result of 

this failure. In particular, we note that the sum A + B is no longer preserved. 

Thus, because of the failure, the state of the system no longer reflects a real 

state of the world that the database is supposed to capture. We term such a 

state an inconsistent state. We must ensure that such inconsistencies are 

not visible in a database system. Note, however, that the system must at 

some point be in an inconsistent state. Even if transaction Ti is executed to 

completion, there exists a point at which the value of account A is $950 and 

the value of account B is $2000, which is clearly an inconsistent state. This 

state, however, is eventually replaced by the consistent state where the value 

of account A is $950, and the value of account B is $2050. Thus, if the 

transaction never started or was guaranteed to complete, such an 

inconsistent state would not be visible except during the execution of the 

transaction. That is the reason for the atomicity requirement: If the atomicity 

property is present, all actions of the transaction are reflected in the 

database, or none are. 

 

The basic idea behind ensuring atomicity is this: The database 

system keeps track (on disk) of the old values of any data on which a 

transaction performs a write. This information is written to a file called the 

log. If the transaction does not complete its execution, the database system 

restores the old values from the log to make it appear as though the 

transaction never executed. Ensuring atomicity is the responsibility of the 

database system; specifically, it is handled by a component of the database 

called the recovery system, 

 

Consistency: The consistency requirement here is that the sum of A and B 

be unchanged by the execution of the transaction. Without the consistency 

requirement, money could be created or destroyed by the transaction! It 

can be verified easily that, if the database is consistent before an execution 

of the transaction, the database remains consistent after the execution of 

the transaction. 

 

Ensuring consistency for an individual transaction is the 

responsibility of the application programmer who codes the transaction. 

This task may be facilitated by automatic testing of integrity constraints 

 

Isolation: Even if the consistency and atomicity properties are ensured for 

each transaction, if several transactions are executed concurrently, their 

operations may interleave in some undesirable way, resulting in an 

inconsistent state. 

 

For example, as we saw earlier, the database is temporarily 

inconsistent while the transaction to transfer funds from A to B is executing, 

with the deducted total written to A and the increased total yet to be written 

to B. If a second concurrently running transaction reads A and B at this 

intermediate point and computes A+B, it will observe an inconsistent value. 

Furthermore, if this second transaction then performs 
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updates on A and B based on the inconsistent values that it read, the database 

may be left in an inconsistent state even after both transactions have 

completed. A way to avoid the problem of concurrently executing 

transactions is to execute transactions serially—that is, one after the other. 

However, concurrent execution of transactions provides significant 

performance benefits. Other solutions have therefore been developed; they 

allow multiple transactions to execute concurrently. The isolation property 

of a transaction ensures that the concurrent execution of transactions results 

in a system state that is equivalent to a state that could have been obtained 

had these transactions executed one at a time in some order. Ensuring the 

isolation property is the responsibility of a component of the database 

system called the concurrency-control system 

 

Durability: Once the execution of the transaction completes successfully, 

and the user who initiated the transaction has been notified that the transfer 

of funds has taken place, it must be the case that no system failure can result 

in a loss of data corresponding to this transfer of funds. The durability 

property guarantees that, once a transaction completes successfully, all the 

updates that it carried out on the database persist, even if there is a system 

failure after the transaction completes execution. We assume for now that a 

failure of the computer system may result in loss of data in main memory, 

but data written to disk are never lost. 

 

1. The updates carried out by the transaction have been written to disk 

before the transaction completes. 

 

2. Information about the updates carried out by the transaction and written 

to disk is sufficient to enable the database to reconstruct the updates when 

the database system is restarted after the failure. 
 

4.1.6 CLASSIFICATION OF TRANSACTION 
 

 

A transaction is seen by the DBMS as a series, or list, of actions. 

The actions that can be executed by a transaction include reads and writes 

of database objects. To keep our notation simple, we assume that an object 

0 is always read into a program variable that is also named O. It can 

therefore denote the action of a transaction T reading an object 0 as RT(O); 

similarly, we can denote writing as HTT(O). When the transaction T is clear 

from the context, we omit the subscript. In addition to reading and writing, 

each transaction must specify as its final action either commit (i.e., complete 

successfully) or abort (i.e., terminate and undo all the actions carried out 

thus far). Abort T denotes the action of T aborting, and Commit T denotes 

T committing. We make two important assumptions: 

 

1. Transactions interact with each other only via database read and write 

operations; for example, they are not allowed to exchange messages. 

 

2. A database is a filed collection of independent objects. When objects 

are added to or deleted from a database or there are relationships between 
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databases objects that we want to exploit for performance, some additional 

issues arise. If the first assumption is violated, the DBMS has no way to 

detect or prevent inconsistencies cause by such external interactions 

between transactions, and it is up to the writer of the application to ensure 

that the program is well-behaved. A schedule is a list of actions (reading, 

writing, aborting, or committing) from a set of transactions, and the order 

in which two actions of a transaction T appear in a schedule must be the 

same as the order in which they appear in T. Intuitively, a schedule 

represents an actual or potential execution sequence. For example, the 

schedule shows an execution order for actions of two transactions T1 and 

T2. It moves forward in time as we go down from one row to the next. It 

emphasize that a schedule describes the actions of transactions as seen by 

the DBMS. In addition to these actions, a transaction may carry out other 

actions, such as reading or writing from operating system files, evaluating 

arithmetic expressions, and so on; however, we assume that these actions 

do not affect other transactions; that is, the effect of a transaction on another 

transaction can be understood solely in terms of the common database 

objects that they read and write. 
 

Figure 4.1.1 A Schedule involving Two Transactions 
 

Note that the schedule in Figure 2.1.1 does not contain an abort or 

commit action for either transaction. A schedule that contains either an abort 

or a commit for each transaction whose actions are listed in it is called a 

complete schedule. A complete schedule must contain all the actions of 

every transaction that appears in it. If the actions of different transactions 

are not interleaved that is, transactions are executed from start to finish, one 

by one-we call the schedule a serial schedule. 

 

CONCURRENT EXECUTION OF TRANSACTIONS 

 

Now that we have introduced the concept of a schedule, we have a 

convenient way to describe interleaved executions of transactions. The 

DBMS interleaves the actions of different transactions to improve 

performance, but not all interleaving should be allowed. In this section, we 

consider what interleaving, or schedules, a DBMS should allow. 

 

Motivation for Concurrent Execution 

 

The schedule shown in Figure 2.1.1 represents an interleaved 

execution of the two transactions. Ensuring transaction isolation while 

permitting such concurrent execution is difficult and necessary for 
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performance reasons. First, while one transaction is waiting for a page to be 

read in from disk, the CPU can process another transaction. This is because 

I/O activity can be done in parallel with CPU activity in a computer. 

Overlapping I/O and CPU activity reduces the amount of time disks and 

processors are idle and increases system throughput (the average number of 

transactions completed in a given time). Second, interleaved execution of a 

short transaction with a long transaction usually allows the short transaction 

to complete quickly. In serial execution, a short transaction could get stuck 

behind a long transaction, leading to unpredictable delays in response time, 

or average time taken to complete a transaction. 

 

Serializability 

 

A serializable schedule over a set S of committed transactions is a 

schedule whose effect on any consistent database instance is guaranteed to 

be identical to that of some complete serial schedule over S. That is, the 

database instance that results from executing the given schedule is identical 

to the database instance that results from executing the transactions in some 

serial order. 

 

As an example, the schedule shown in Figure 2.1.2 is serializable. 

Even though the actions of T1 and T2 are interleaved, the result of this 

schedule is equivalent to running T1 (in its entirety) and then running T2. 

Intuitively, T1 's read and write of B is not influenced by T2's actions on 

A, and the net effect is the same if these actions are 'swapped' to obtain the 

serial schedule Tl; T2 
 

Fig: A Serializable Schedule 

 

Executing transactions serially in different orders may produce 

different results, but all are presumed to be acceptable: the DBMS makes 

no guarantees about which of them will be the outcome of an interleaved 

execution. To see this, note that the two example transactions from Figure 

2.1.2 can be interleaved as shown in Figure 2.13. This schedule, also 

serializable, is equivalent to the serial schedule T2; Tl. If T1 and T2 are 

submitted concurrently to a DBMS, either of these schedules (among others) 

could be chosen. The preceding definition of a serializable 
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schedule does not cover the case of schedules containing aborted 

transactions. We extend the definition of serializable schedules to cover 

aborted transactions in Section 16.3.4. 

 
Fig:4.1.3 Another Serializable Schedule 

 

Finally, we note that a DBMS might sometimes execute transactions 

in a way that is not equivalent to any serial execution; that is, using a 

schedule that is not serializable. This can happen for two reasons. First, the 

DBMS might use a concurrency control method that ensures the executed 

schedule, though not itself serializable, is equivalent to some serializable 

schedule. Second, SQL gives application programmers the ability to instruct 

the DBMS to choose non-serializable schedules. 

 

Transaction Characteristics in SQL 

 

In order to give programmers control over the locking overhead 

incurred by their transactions, SQL allows them to specify three 

characteristics of a transaction: access mode, diagnostics size, and isolation 

level. The diagnostics size determines the number of error conditions that 

can be recorded; we will not discuss this feature further. If the access mode 

is READ ONLY, the transaction is not allowed to modify the database. 

Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be 

executed. If we have to execute one of these commands, the access mode 

should be set to READ WRITE. for transactions with READ ONLY access 

mode only shared locks need to be obtained, thereby increasing 

concurrency. 

 

The isolation level controls the extent to which a given transaction 

is exposed to the actions of other transactions executing concurrently. By 

choosing one of four possible isolation level settings, a user can obtain 

greater concurrency at the cost of increasing the transaction's exposure to 

other transactions' uncommitted changes. Isolation level choices are READ 

UNCOMMITTED, READ COMMITTED, REPEATABLE 

READ, and SERIALIZABLE. The effect of these levels is summarized in 

Figure 2.14. In this context, dirty read and unrepeatable read are defined 

as usual 
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Fig: 4.1.4 Transaction Isolation Levels in SQL-92 

 

The highest degree of isolation from the effects of other transactions 

is achieved by setting the isolation level for a transaction T to 

SERIALIZABLE. This isolation level ensures that T reads only the changes 

made by committed transactions, that no value read or written by T is 

changed by any other transaction until T is complete, and that if T reads a 

set  of values based  on some search  condition, this set is not changed 

by other transactions until T is complete (i.e., T avoids the phantom 

phenomenon). In terms of a lock-based implementation, a SERIALIZABLE 

transaction obtains locks before reading or writing objects, including locks 

on sets of objects that it requires to be unchanged and holds them until the 

end, according to Strict 2PL. REPEATABLE READ ensures that T reads 

only the changes made by committed transactions and no value read or 

written by T is changed by any other transaction until T is complete. 

However, T could experience the phantom phenomenon; for example, while 

T examines all Sailors records with rating=1, another transaction might add 

a new such Sailors record, which is missed by T. A REPEATABLE READ 

transaction sets the same locks as a SERIALIZABLE transaction, except 

that it does not do index locking; that is, it locks only individual objects, not 

sets of objects. READ COMMITTED ensures that T reads only the changes 

made by committed transactions, and that no value written by T is changed 

by any other transaction until T is complete. However, a value read by T 

may well be modified by another transaction while T is still in progress, and 

T is exposed to the phantom problem. A READ COMMITTED transaction 

obtains exclusive locks before writing objects and holds these locks until 

the end. It also obtains shared locks before reading objects, but these locks 

are released immediately; their only effect is to guarantee that the 

transaction that last modified the object is complete. (This guarantee relies 

on the fact that every SQL transaction obtains exclusive locks before writing 

objects and holds exclusive locks until the end.) A READ 

UNCOMMITTED transaction T can read changes made to an object by an 

ongoing transaction; obviously, the object can be changed further while T 

is in progress, and T is also vulnerable to the phantom problem. A READ 

UNCOMMITTED transaction does not obtain shared locks before reading 

objects. This mode represents the greatest exposure to uncommitted 

changes of other transactions; so much so that SQL prohibits such a 

transaction from making any changes itself-a READ UNCOMMITTED 

transaction is required to have an access mode of READ ONLY. Since such 

a transaction obtains no locks for reading objects and it is not allowed to 

write objects (and therefore never requests exclusive locks), it never makes 

any lock requests. The SERIALIZABLE isolation level is generally the  

safest and is recommended for most transactions. Some 
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transactions, however, can run with a lower isolation level, and the smaller 

number of locks requested can contribute to improved system performance. 

For example, a statistical query that finds the average sailor age can be run 

at the READ COMMITTED level or even the READ UNCOMMITTED 

level, because a few incorrect or missing values do not significantly affect 

the result if the number of sailors is large. The isolation level and access 

mode can be set using the SET TRANSACTION command. For example, 

the following command declares the current transaction to be 

SERIALIZABLE and READ ONLY: SET TRANSACTION ISOLATION 

LEVEL SERIALIZABLE READ ONLY 

When a transaction is started, the default is SERIALIZABLE and READ 

WRITE. 

 

Schedules Involving Aborted Transactions 

 

Intuitively, all actions of aborted transactions are to be undone, and 

we can therefore imagine that they were never carried out to begin with. 

Using this intuition, we extend the definition of a serializable schedule as 

follows: A serializable schedule over a set S of transactions is a schedule 

whose effect on any consistent database instance is guaranteed to be 

identical to that of some complete serial schedule over the set of committed 

transactions in S. This definition of serializability relies on the actions of 

aborted transactions being undone completely, which may be impossible in 

some situations. For example, suppose that (1) an account transfer program 

T1 deducts $100 from account A, then (2) an interest deposit program T2 

reads the current values of accounts A and B and adds 6% interest to each, 

then commits, and then (3) T1 is aborted. The corresponding schedule is 

shown in Figure 2.1.5. 
 

Fig:4.1.5 An Unrecoverable Schedule 
 

Now, T2 has read a value for A that should never have been there. 

(Recall that aborted transactions' effects are not supposed to be visible to 

other transactions.) If T2 had not yet committed, we could deal with the 

situation by cascading the abort of TI and also aborting T2; this process 

recursively aborts any transaction that read data written by T2, and so on. 

But T2 has already committed, and so we cannot undo its actions. We say 

that such a schedule is unrecoverable. In a recoverable schedule, 

transactions commit only after (and if!) all transactions whose changes they 

read commit. If transactions read only the changes of committed 

transactions, not only is the schedule recoverable, but also aborting a 
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transaction can be accomplished without cascading the abort to other 

transactions. Such a schedule is said to avoid cascading aborts. There is 

another potential problem in undoing the actions of a transaction. Suppose 

that a transaction T2 overwrites the value of an object A that has been 

modified by a transaction TI, while TI is still in progress, and Tl 

subsequently aborts. All of Tl's changes to database objects are undone by 

restoring the value of any object that it modified to the value of the object 

before Tl's changes. When Tl is aborted and its changes are undone in this 

manner, T2's changes are lost as well, even if T2 decides to commit. So, for 

example, if A originally had the value 5, then WetS changed by T1 to 6, and 

by T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even if T2 

commits, its change to A is inadvertently lost. A concurrency control 

technique called Strict 2PL. 
 

4.2.1 CONCURRENCY CONTROL 
 

 

The DBMS interleaves the actions of different transactions to 

improve performance, but not all interleaving should be allowed. In this 

section, we consider what interleaving, or schedules, a DBMS should 

allow. 
 

4.2.2 DEFINITION 
 

 

The database system must control the interaction among the 

concurrent transactions to prevent them from destroying the consistency of 

the database. It does so through a variety of mechanisms called 

concurrency-control schemes 
 

4.2.3 EXECUTION SCHEDULES 
 

 

Consider again the simplified banking system which has several 

account, and a set of transactions that access and update those accounts. Let 

T1 and T2 be two transactions that transfer funds from one account to 

another. Transaction T1 transfers $50 from account A to account B. It is 

defined as: 
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Transaction T2 transfers 10 percent of the balance from account A 

to account B. It is defined as: 

 
 

Suppose the current values of accounts A and B are $1000 and 

$2000, respectively. Suppose also that the two transactions are executed one 

at a time in the order T1 followed by T2. This execution sequence appears 

in above Figure. In the figure, the sequence of instruction steps is in 

chronological order from top to bottom, with instructions of T1 appearing 

in the left column and instructions of T2 appearing in the right column. The 

final values of accounts A and B, after the execution in Figure 2.2.1 takes 

place, are $855 and $2145, respectively. Thus, the total amount of money 

in accounts A and B—that is, the sum A + B—is preserved after the 

execution of both transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 4.2.1 Schedule 1-a serial schedule in which T1 is followed by T2 

Similarly, if the transactions are executed one at a time in the order 

T2 followed by T1, then the corresponding execution sequence is that of 

Figure 2.1.2. Again, as expected, the sum A + B is preserved, and the final 

values of accounts A and B are $850 and $2150, respectively. 



38  

 
Fig: 4.1.2 Schedule 2-a serial schedule in which T2 is followed by T1 

 

The execution sequences just described are called schedules. They 

represent the chronological order in which instructions are executed in the 

system. Clearly, a schedule for a set of transactions must consist of all 

instructions of those transactions, and must preserve the order in which the 

instructions appear in each individual transaction. For example, in 

transaction T1, the instruction write(A) must appear before the instruction 

read(B), in any valid schedule. Note that we include in our schedules the 

commit operation to indicate that the transaction has entered the committed 

state. In the following discussion, we shall refer to the first execution 

sequence (T1 followed by T2) as schedule 1, and to the second execution 

sequence (T2 followed by T1) as schedule 2. These schedules are serial: 

Each serial schedule consists of a sequence of instructions from various 

transactions, where the instructions belonging to one single transaction 

appear together in that schedule. Recalling a well-known formula from 

combinations, we note that, for a set of n transactions, there exist n factorial 

(n!) different valid serial schedules. 

 

When the database system executes several transactions 

concurrently, the corresponding schedule no longer needs to be serial. If two 

transactions are running concurrently, the operating system may execute 

one transaction for a little while, then perform a context switch, execute the 

second transaction for some time, and then switch back to the first 

transaction for some time, and so on. 

 

With multiple transactions, the CPU time is shared among all the 

transactions. Several execution sequences are possible, since the various 

instructions from both transactions may now be interleaved. In general, it 

is not possible to predict exactly how many instructions of a transaction will 

be executed before the CPU switches to another transaction. 
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Returning to our previous example, suppose that the two 

transactions are executed concurrently. One possible schedule appears in 

Figure 2.2.3. After this execution takes place, we arrive at the same state as 

the one in which the transactions are executed serially in the order T1 

followed by T2. The sum A + B is indeed preserved. Not all concurrent 

executions result in a correct state. To illustrate, consider the schedule of 

Figure 2.2.4. After the execution of this schedule, we arrive at a state where 

the final values of accounts A and B are $950 and $2100, respectively. This 

final state is an inconsistent state, since we have gained 

$50 in the process of the concurrent execution. Indeed, the sum A + B is not 

preserved by the execution of the two transactions. 

 

If control of concurrent execution is left entirely to the operating 

system, many possible schedules, including ones that leave the database in 

an inconsistent state, such as the one just described, are possible. It is the 

job of the database system to ensure that any schedule that is executed will 

leave the database in a consistent state. The concurrency-control 

component of the database system carries out this task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 4.2.3 Schedule 3-a concurrent schedule equivalent to schedule 1 We 

can ensure consistency of the database under concurrent 

execution by making sure that any schedule that is executed has the same 

effect as a schedule that could have occurred without any concurrent 

execution. That is, the schedule should, in some sense, be equivalent to a 

serial schedule. Such schedules are called serializable schedules. 



40  

 

Fig: 4.2.4 Schedule 4-a concurrent schedule resulting in an inconsistent 

state 
 

4.2.4 LOCKING BASED ALGORITHMS 
 

 

Lock-Based Protocols 

 

One way to ensure isolation is to require that data items be accessed 

in a mutually exclusive manner; that is, while one transaction is accessing a 

data item, no other transaction can modify that data item. The most common 

method used to implement this requirement is to allow a transaction to 

access a data item only if it is currently holding a lock on that item. 

 

Locks 

 

There are various modes in which a data item may be locked. In this 

section, we restrict our attention to two modes: 

 

1. Shared:- If a transaction Ti has obtained a shared-mode lock (denoted 

by S) on item Q, then Ti can read, but cannot write, Q. 

 

2. Exclusive:- If a transaction Ti has obtained an exclusive-mode lock 

(denoted by X) on item Q, then Ti can both read and write Q. 
 

Fig: 2.2.5 Lock-compatibility matix comp 
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We require that every transaction request a lock in an appropriate 

mode on data item Q, depending on the types of operations that it will 

perform on Q. The transaction makes the request to the concurrency- control 

manager. The transaction can proceed with the operation only after the 

concurrency-control manager grants the lock to the transaction. The use 

of these two lock modes allows multiple transactions to read a data item but 

limits write access to just one transaction at a time. 

 

To state this more generally, given a set of lock modes, we can 

define a compatibility function on them as follows: Let A and B represent 

arbitrary lock modes. Suppose that a transaction Ti requests a lock of mode 

A on item Q on which transaction Tj (Ti _= Tj ) currently holds a lock of 

mode B. If transaction Ti can be granted a lock on Q immediately, in spite 

of the presence of the mode B lock, then we say mode A is compatible with 

mode B. Such a function can be represented conveniently by a matrix. The 

compatibility relation between the two modes of locking discussed in this 

section appears in the matrix comp of Figure 2.2.5. An element comp(A, B) 

of the matrix has the value true if and only if mode A is compatible with 

mode B. 

 

Note that shared mode is compatible with shared mode, but not with 

exclusive mode. At any time, several shared-mode locks can be held 

simultaneously (by different transactions) on a particular data item. A 

subsequent exclusive-mode lock request has to wait until the currently 

held shared-mode locks are released. 

 

A transaction requests a shared lock on data item Q by executing the 

lock- S(Q) instruction. Similarly, a transaction requests an exclusive lock 

through the lock-X(Q) instruction. A transaction can unlock a data item Q 

by the unlock(Q) instruction. 

 

To access a data item, transaction Ti must first lock that item. If the 

data item is already locked by another transaction in an incompatible mode, 

the concurrency control manager will not grant the lock until all 

incompatible locks held by other transactions have been released. Thus, Ti 

is made to wait until all incompatible locks held by other transactions have 

been released. 

 

Transaction Ti may unlock a data item that it had locked at some 

earlier point. Note that a transaction must hold a lock on a data item as 

long as it accesses that item. Moreover, it is not necessarily desirable for a 

transaction to unlock a data item immediately after its final access of that 

data item, since serializability may not be ensured. 

 

As an illustration, consider again the banking example. Let A and 

B be two accounts that are accessed by transactions T1 and T2. Transaction 

T1 transfers $50 from account B to account A (Figure 2.2.6). 
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Fig: 4.2.6 Transaction T1 

 
 

Transaction T2 displays the total amount of money in accounts A 

and B—that is, the sum A + B (Figure 2.2.7). Suppose that the values of 

accounts A and B are $100 and $200, respectively. 

 

If these two transactions are executed serially, either in the order T1, 

T2 or the order T2, T1, then transaction T2 will display the value $300. If, 

however, these transactions are executed concurrently, then schedule 1, in 

Figure 2.2.8, is possible. In this case, transaction T2 displays $250, which 

is incorrect. The reason for this mistake is that the transaction T1 unlocked 

data item B too early, as a result of which T2 saw an inconsistent state. The 

schedule shows the actions executed by the transactions, as well as the points 

at which the concurrency-control manager grants the locks. The transaction 

making a lock request cannot execute its next action until the concurrency 

control manager grants the lock. Hence, the lock must be granted in the 

interval of time between the lock-request operation and the following action 

of the transaction. 

 

Exactly when within this interval the lock is granted is not 

important; we can safely assume that the lock is granted just before the 

following action of the transaction. We let you infer when locks are granted. 
 

Fig:4.2.7 Transaction T2 
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Fig: 4.2.8 Schedule 1 

 

Suppose now that unlocking is delayed to the end of the transaction. 

Transaction T3 corresponds to T1 with unlocking delayed (Figure 2.2.9). 

Transaction T4 corresponds to T2 with unlocking delayed (Figure 2.2.10). 

You should verify that the sequence of reads and writes in schedule 1, which 

lead to an incorrect total of $250 being displayed, is no longer possible with 

T3 and T4. 
 

Fig: 4.2.9 Transaction T3(transaction T1 with unlocking delayed) 
 

Fig: 4.2.10 Transaction T4(transaction T2 with unlocking delayed) 
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Other schedules are possible. T4 will not print out an inconsistent 

result in any of them; Unfortunately, locking can lead to an undesirable 

situation. Consider the partial schedule of Figure 2.2.11 for T3 and T4. Since 

T3 is holding an exclusive emode lock on B and T4 is requesting a shared-

mode lock on B, T4 is waiting for T3 to unlock B. Similarly, since T4 is 

holding a shared-mode lock on A and T3 is requesting an exclusive- mode 

lock on A, T3 is waiting for T4 to unlock A. Thus,we have arrived at a state 

where neither of these transactions can ever proceed with its normal 

execution. This situation is called deadlock. When deadlock occurs, the 

system must roll back one of the two transactions. Once a transaction has 

been rolled back, the data items that were locked by that transaction are 

unlocked. These data items are then available to the other transaction, which 

can continue with its execution. 

 

If we do not use locking, or if we unlock data items too soon after 

reading or writing them, we may get inconsistent states. On the other hand, 

if we do not unlock a data item before requesting a lock on another data 

item, deadlocks may occur. There are ways to avoid deadlock in some 

situations. However, in general, deadlocks are a necessary evil associated 

with locking, if we want to avoid inconsistent states. Deadlocks are 

definitely whereas inconsistent states may lead to real-world problems that 

cannot be handled by the database system. 
 

Fig: 4.2.11 Schedule 2 
 

Preferable to inconsistent states, since they can be handled by rolling 

back transactions. We shall require that each transaction in the system 

follow a set of rules, called a locking protocol, indicating when a transaction 

may lock and unlock each of the data items. Locking protocols restrict the 

number of possible schedules. The set of all such schedules is a proper subset 

of all possible serializable schedules. We shall present several locking 

protocols that allow only conflict-serializable schedules, and thereby ensure 

isolation. Before doing so, we introduce some terminology. 

 

Let {T0, T1, . . . , Tn} be a set of transactions participating in a 

schedule S. We say that Ti precedes Tj in S, written Ti → Tj, if there exists 

a data item Q such that Ti has held lock mode A on Q, and Tj has held lock 

mode B on Q later, and comp(A,B) = false. If Ti →Tj , then that precedence 

implies that in any equivalent serial schedule, Ti must appear 
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before Tj . Observe that this graph is similar to the precedence graph to 

test for conflict serializability. 

 

Conflicts between instructions correspond to noncompatibility of 

lock modes. We say that a schedule S is legal under a given locking protocol 

if S is a possible schedule for a set of transactions that follows the rules of 

the locking protocol. We say that a locking protocol ensures conflict 

serializability if and only if all legal schedules are conflict serializable; in 

other words, for all legal schedules the associated→relation is acyclic. 
 

4.2.5 TIMESTAMP ORDERING ALGORITHMS 
 

 

The locking protocols that we have described thus far determine 

the order between every pair of conflicting transactions at execution time 

by the first lock that both members of the pair request that involves 

incompatible modes. Another method for determining the serializability 

order is to select an ordering among transactions in advance. The most 

common method for doing so is to use a timestamp-ordering scheme. 

 

Timestamps 

 

With each transaction Ti in the system, we associate a unique fixed 

timestamp, denoted by TS(Ti ). This timestamp is assigned by the database 

system before the transaction Ti starts execution. If a transaction Ti has been 

assigned timestamp TS(Ti ), and a new transaction Tj enters the system, then 

TS(Ti ) < TS(Tj ). There are two simple methods for implementing this 

scheme: 

 

1. Use the value of the system clock as the timestamp; that is, a 

transaction’s timestamp is equal to the value of the clock when the 

transaction enters the system. 

 

2. Use a logical counter that is incremented after a new timestamp has been 

assigned; that is, a transaction’s timestamp is equal to the value of the 

counter when the transaction enters the system. 

 

The timestamps of the transactions determine the serializability 

order. Thus, if TS(Ti ) < TS(Tj ), then the system must ensure that the 

produced schedule is equivalent to a serial schedule in which transaction 

Ti appears before transaction Tj . 

 

To implement this scheme, we associate with each data item Q two 

timestamp values: 

 

• W-timestamp(Q) denotes the largest timestamp of any transaction that 

executed write(Q) successfully. 



46  

• R-timestamp(Q) denotes the largest timestamp of any transaction that 

executed read(Q) successfully. 

 

These timestamps are updated whenever a new read(Q) or write(Q) 

instruction is executed. 

 

The Timestamp-Ordering Protocol 

 

The timestamp-ordering protocol ensures that any conflicting read 

and write operations are executed in timestamp order. This protocol 

operates as follows: 

 

1. Suppose that transaction Ti issues read(Q). 
 

a. If TS(Ti ) < W-timestamp(Q), then Ti needs to read a value of Q that was 

already overwritten. Hence, the read operation is rejected, and Ti is rolled 

back. 

 

b. If TS(Ti ) ≥ W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti ). 

 

2. Suppose that transaction Ti issues write(Q). 
 

a. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing was 

needed previously, and the system assumed that that value would never be 

produced. Hence, the system rejects the write operation and rolls Ti back. 

 

b. If TS(Ti ) < W-timestamp(Q), then Ti is attempting to write an obsolete 

value of Q. Hence, the system rejects this write operation and rolls Ti 

back. 

 

c. Otherwise, the system executes the write operation and sets W- 

timestamp( Q) to TS(Ti ). 

 

If transactions Ti is rolled back by the concurrency-control scheme as result 

of issuance of either a read or writes operation, the system assigns it a new 

timestamp and restarts it. 

 

To illustrate this protocol, we consider transactions T25 and T26. 

Transaction T25 displays the contents of accounts A and B: 
 



47  

 
 

In presenting schedules under the timestamp protocol, we shall 

assume that a transaction is assigned a timestamp immediately before its 

first instruction. Thus, in schedule 3 of Figure 2.2.12, TS(T25)< TS(T26), 

and the schedule is possible under the timestamp protocol. We note that the 

preceding execution can also be produced by the two-phase locking 

protocol. 

 

There are, however, schedules that are possible under the twophase 

locking protocol, but are not possible under the timestamp protocol, and 

vice versa. 

 

The timestamp-ordering protocol ensures conflict serializability. 

This is because conflicting operations are processed in timestamp order. The 

protocol ensures freedom from deadlock, since no transaction everwaits. 

 

However, there is a possibility of starvation of long transactions if 

a sequence of conflicting short transactions causes repeated restarting of the 

long transaction. If a transaction is suffering from repeated restarts, 

conflicting transactions need to be temporarily blocked to enable the 

transaction to finish. 
 

Fig:2.2.12 Schedule 3 
 

The protocol can generate schedules that are not recoverable. 

However, it can be extended to make the schedules recoverable, in one of 

several ways: 
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• Recoverability and cascadelessness can be ensured by performing all 

writes together at the end of the transaction. The writes must be atomic in 

the following sense: While the writes are in progress, no transaction is 

permitted to access any of the data items that have been written. 

 

• Recoverability and cascadelessness can also be guaranteed by using a 

limited form of locking, whereby reads of uncommitted items are postponed 

until the transaction that updated the item commits. 

 

• Recoverability alone can be ensured by tracking uncommitted writes, and 

allowing a transaction Ti to commit only after the commit of any transaction 

that wrote a value that Ti read. Commit dependencies, can be used for this 

purpose. 

 

Thomas’ Write Rule 

 

We now present a modification to the timestamp-ordering protocol 

that allows greater potential concurrency than does the protocol. Let us 

consider schedule 4 of Figure 2.2.13, and apply the timestamp-ordering 

protocol. Since T27 starts before T28, we shall assume that TS(T27) < 

TS(T28). The read(Q) operation of T27 succeeds, as does the write(Q) 

operation of T28. When T27 attempts its write(Q) operation, we find that 

TS(T27) < W-timestamp(Q), since W timestamp( Q) = TS(T28). Thus, the 

write(Q) by T27 is rejected and transaction T27 

must be rolled back. 

 

Although the rollback of T27 is required by the timestamp- ordering 

protocol, it is unnecessary. Since T28 has already written Q, the value that 

T27 is attempting to write is one that will never need to be read. Any 

transaction Ti with TS(Ti ) < TS(T28) that attempts a read(Q)will be rolled 

back, since TS(Ti)<W-timestamp(Q). Any transaction Tj with TS(Tj ) > 

TS(T28) must read the value of Q written by T28, rather than the value 

that T27 is attempting to write. 

 

This observation leads to modified version of the timestamp- 

ordering protocol in which obsolete write operations can be ignored under 

certain circumstances. The protocol rules for read operations remain 

unchanged.. 

 
Fig: 2.2.13 Schedule 4 

 

The modification to the timestamp-ordering protocol, called 

Thomas’ write rule, is this: Suppose that transaction Ti issues write (Q). 
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1. If TS(Ti ) < R-timestamp(Q), then the value of Q that Ti is producing 

was previously needed, and it had been assumed that the value would never 

be produced. Hence, the system rejects the write operation and rolls Ti back. 

 

2. If TS(Ti ) < W-timestamp(Q), then Ti is attempting to write an obsolete 

value of Q. Hence, this write operation can be ignored. 

 

3. Otherwise, the system executes the write operation and sets W- 

timestamp (Q) to TS(Ti ). 

 

The difference between these rules and those of Section lies in the 

second rule. The timestamp-ordering protocol requires that Ti be rolled back 

if Ti issues write (Q) and TS(Ti ) < W-timestamp(Q). However, here, in 

those cases where TS(Ti ) ≥ R-timestamp(Q), we ignore the obsolete write. 

By ignoring the write, Thomas’ write rule allows schedules that are not 

conflict serializable but are nevertheless correct. Those non-conflict- 

serializable schedules allowed satisfy the definition of view serializable 

schedules (see example box). 

 

Thomas’ write rule makes use of view serializability by, in effect, 

deleting obsolete write operations from the transactions that issue them. 

This modification of transactions makes it possible to generate serializable 

schedules that would not be possible under the other protocols presented 

in this chapter. For example, schedule 4 of above Figure is not conflict 

serializable and, thus, is not possible under the two-phase locking 

protocol, the tree protocol, or the timestamp-ordering protocol. Under 

Thomas’ write rule, the write (Q) operation of T27 would be ignored. The 

result is a schedule that is view equivalent to the serial schedule <T27, 

T28>. 
 

4.2.6 DEADLOCK MANAGEMENT 
 

 

Deadlocks tend to be rare and typically involve very few 

transactions. In practice, therefore, database systems periodically check for 

deadlocks. When a transaction Ti is suspended because a lock that it 

requests cannot be granted, it must wait until all transactions Tj that 

currently hold conflicting locks release them. The lock manager maintains 

a structure called a waits-for graph to detect deadlock cycles. The nodes 

correspond to active transactions, and there is an arc from Ti to 'Tj if (and 

only if)Ti is waiting for 1) to release a lode The lock manager adds edges to 

this graph when it queues lock requests and removes edges when it grants 

lock requests. Consider the schedule shown in Figure 2.2.14. The last step, 

shown below the line, creates a cycle in the waits-for graph. Figure 2.2.15 

shows the waits-for graph before and after this step. 
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Fig: 2.2.14 Schedule Illustrating Deadlock 

 

 

Fig: 2.2.15 Waits-for Graph Before and After Deadlock 

 

Observe that the waits-for graph describes all active transactions, 

some of which eventually abort. If there is an edge from Ti to T'j in the 

waits-for graph, and both Ti and Tj eventually commit, there is an edge in 

the opposite direction (from T'j to Ti) in the precedence graph (which 

involves only transactions). The waits-for graph is periodically checked 

for cycles, which indicate deadlock. A deadlock is resolved by aborting a 

transaction that is on a cycle and releasing its locks; this action allows Some 

of the waiting transactions to proceed. The choice of which transaction to 

abort can be made using several criteria: the one with the fewest locks, the 

one that has done the least work, the one that is farthest from completion, 

and so all. Further, a transaction might have been repeatedly restarted; if so, 

it should eventually be favored during deadlock detection and allowed to 

complete. A simple alternative to maintaining a waits-for graph is to 

identify deadlocks through a timeout mechanism. 

 

Deadlock Prevention 

 

Empirical results indicate that deadlocks are relatively infrequent, 

and detection based schemes work well in practice. However, if there is a 

high level of contention for locks and therefore an increased likelihood of 

deadlocks, prevention based schedules could perform better. We can 

prevent deadlocks by giving each transaction a priority and ensuring that 
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lower-priority transactions are not allowed to wait for higher-priority 

transactions (or vice versa). One way to assign priorities is to give each 

transaction a timestamp when it starts up. 

 

The lower the timestamp, the higher is the transaction's priority; that 

is, the oldest transaction has the highest priority. 

 

If a transaction Ti requests a lock and transaction Tj holds a 

conflicting lock, the lock manager can use one of the following two policies: 

 

II Wait-die: If Ti has higher priority, it is allowed to wait; otherwise, it is 

aborted. 

II Wound-wait: If Ti has higher priority, abort 7); otherwise, l"1i waits 

 

In the wait-die scheme, lower-priority transactions can never wait 

for higher priority transactions. In the wound-wait scheme, higher-priority 

transactions never wait for lower-priority transactions. In either ease, no 

deadlock cycle develops A subtle point is that we must also ensure that no 

transaction is perennially aborted because it never has a sufficiently high 

priority. (Note that, in both schemes, the higher-priority transaction is never 

aborted.) When a transaction is aborted and restarted, it should be given the 

same timestamp it had originally. Reissuing timestamps in this way ensures 

that each transaction will eventually become the oldest transaction, and 

therefore the one with the highest priority, and will get all the locks it 

requires. The wait-die scheme is non preemptive; only a transaction 

requesting a lock can be aborted. As a transaction grows older (and its 

priority increases), it tends to wait for more and more young transactions. 

A younger transaction that conflicts with an older transaction may be 

repeatedly aborted (a disadvantage with respect to wound-wait), but on the 

other hand, a transaction that has all the locks it needs is never aborted for 

deadlock reasons (an advantage with respect to wound-wait, which is 

preemptive). 

 

A variant of 2PL, called Conservative 2PL, can also prevent 

deadlocks. Under Conservative 2PL, a transaction obtains all the locks it 

will ever need when it begins, or blocks waiting for these locks to become 

available. This scheme ensures that there will be no deadlocks, and, perhaps 

more important, that a transaction that already holds some locks will not 

block waiting for other locks. If lock contention is heavy, Conservative 2PL 

can reduce the time that locks are held on average, because transactions 

that hold locks are never blocked. The trade-off is that a transaction 

acquires locks earlier, and if lock contention is low, locks are held longer 

under Conservative 2PL. From a practical perspective, it is hard to know 

exactly what locks are needed ahead of time, and this approach leads to 

setting more locks than necessary. It also has higher overhead for setting 

locks because a transaction has to release all locks and try to obtain them all 

over if it fails to obtain even one lock that it needs. 
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The Two-Phase Locking Protocol 

 

One protocol that ensures serializability is the two-phase locking 

protocol. This protocol requires that each transaction issue lock and unlock 

requests in two phases: 

 

1. Growing phase. A transaction may obtain locks, but may not release 

any lock. 

2. Shrinking phase. A transaction may release locks, but may not obtain 

any new locks. 

 

Initially, a transaction is in the growing phase. The transaction 

acquires locks as needed. Once the transaction releases a lock, it enters the 

shrinking phase, and it can issue no more lock requests. 

 

For example, transactions T3 and T4 are two phase. On the other 

hand, transactions T1 and T2 are not two phase. Note that the unlock 

instructions do not need to appear at the end of the transaction. For example, 

in the case of transaction T3, we could move the unlock(B) instruction to 

just after the lock-X(A) instruction, and still retain the two- phase locking 

property. We can show that the two-phase locking protocol ensures conflict 

serializability. Consider any transaction. The point in the schedule where 

the transaction has obtained its final lock (the end of its growing phase) is 

called the lock point of the transaction. Now, transactions can be ordered 

according to their lock point this ordering is, in fact, a serializability 

ordering for the transactions. Two-phase locking does not ensure freedom 

from deadlock. Observe that transactions T3 and T4 are two phase, but, in 

schedule 2, they are deadlocked. Recall from Section that, in addition to 

being serializable, schedules should be cascadeless. Cascading rollback 

may occur under two-phase locking. As an illustration, consider the partial 

schedule of Figure2.2.16. Each transaction observes the two-phase locking 

protocol, but the failure of T5 after the read (A) step of T7 leads to cascading 

rollback of T6 and T7. 

 

Cascading rollbacks can be avoided by a modification of two- phase 

locking called the strict two-phase locking protocol. This protocol requires 

not only that locking be two phase, but also that all exclusive- mode locks 

taken by a transaction be held until that transaction commits. This 

requirement ensures that any data written by an uncommitted transaction 

are locked in exclusive mode until the transaction commits, preventing any 

other transaction from reading the data. Another variant of two-phase 

locking is the rigorous two-phase locking protocol, which requires that all 

locks be held until the transaction commits. 
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Fig: 2.2.16 Partial Schedule under two-phase locking 

 

We can easily verify that, with rigorous two-phase locking, 

transactions can be serialized in the order in which they commit. Consider 

the following two transactions, for which we have shown only some of the 

significant read and write operations: 
 

 

If we employ the two-phase locking protocol, then T8 must lock a1 

in exclusive mode. Therefore, any concurrent execution of both transactions 

amounts to a serial execution. Notice, however, that T8 needs an exclusive 

lock on a1 only at the end of its execution, when it writes a1. Thus, if T8 

could initially lock a1 in shared mode, and then could later change the lock 

to exclusive mode, we could get more concurrency, since T8 and T9 could 

access a1 and a2 simultaneously. This observation leads us to a refinement 

of the basic two-phase locking protocol, in which lock conversions are 

allowed. We shall provide a mechanism for upgrading a shared lock to an 

exclusive lock, and downgrading an exclusive lock to a shared lock. We 

denote conversion from shared to exclusive modes by upgrade, and from 

exclusive to shared by downgrade. Lock conversion cannot be allowed 

arbitrarily. Rather, upgrading can take place in only the growing phase, 

whereas downgrading can take place in only the shrinking phase. 
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Fig: 2.2.17 Incomplete schedule with a lock conversion 

 

Returning to our example, transactions T8 and T9 can run 

concurrently under the refined two-phase locking protocol, as shown in 

the incomplete schedule of Figure 2.2.17, where only some of the locking 

instructions are shown. Note that a transaction attempting to upgrade a 

lock on an item Q may be forced to wait. This enforced wait occurs if Q is 

currently locked by another transaction in shared mode. 

 

Just like the basic two-phase locking protocol, two-phase locking 

with lock conversion generates only conflict-serializable schedules, and 

transactions can be serialized by their lock points. Further, if exclusive locks 

are held until the end of the transaction, the schedules are cascadeless. For 

a set of transactions, there may be conflict-serializable schedules that cannot 

be obtained through the two-phase locking protocol. However, to obtain 

conflict-serializable schedules through non-two-phase locking protocols, 

we need either to have additional information about the transactions or to 

impose some structure or ordering on the set of data items in the database. 

Strict two-phase locking and rigorous two-phase locking (with lock 

conversions) are used extensively in commercial database systems. A 

simple but widely used scheme automatically generates the appropriate lock 

and unlock instructions for a transaction, on the basis of read and write 

requests from the transaction: 

 

• When a transaction Ti issues a read(Q) operation, the system issues a lock- 

S(Q) instruction followed by the read(Q) instruction. 

 

• When Ti issues a write(Q) operation, the system checks to see whether Ti 

already holds a shared lock on Q. If it does, then the system issues an 

upgrade( Q) instruction, followed by the write(Q) instruction. Otherwise, 

the system issues a lock-X(Q) instruction, followed by the write(Q) 

instruction. 

 

• All locks obtained by a transaction are unlocked after that transaction 

commits or aborts. 
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Implementation of Locking 

 

A lock manager can be implemented as a process that receives 

messages from transactions and sends messages in reply. The lock- manager 

process replies to lock-request messages with lock-grant messages, or with 

messages requesting rollback of the transaction (in case of deadlocks). 

Unlock messages require only an acknowledgment in response, but may 

result in a grant message to another waiting transaction. 

 

The lock manager uses this data structure: For each data item that 

is currently locked, it maintains a linked list of records, one for each request, 

in the order in which the requests arrived. It uses a hash table, indexed on 

the name of a data item, to find the linked list (if any) for a data item; this 

table is called the lock table. Each record of the linked list for a data item 

notes which transaction made the request, and what lock mode it requested. 

The record also notes if the request has currently been granted. Figure 2.2.18 

shows an example of a lock table. The table contains locks for five different 

data items, I4, I7, I23, I44, and I912. The lock table uses overflow chaining, 

so there is a linked list of data items for each entry in the lock table. 

 

There is also a list of transactions that have been granted locks, or 

are waiting for locks, for each of the data items. Granted locks are the 

rectangles filled in a darker shade, while waiting requests are the rectangles 

filled in a lighter shade. We have omitted the lock mode to keep the figure 

simple. It can be seen, for example, that T23 has been granted locks on I912 

and I7, and is waiting for a lock on I4. Although the figure does not show 

it, the lock table should also maintain an index on transaction identifiers, so 

that it is possible to determine efficiently the set of locks held by a given 

transaction. 

 

The lock manager processes requests this way: When a lock request 

message arrives, it adds a record to the end of the linked list for the data 

item, if the linked list is present. Otherwise it creates a new linked list, 

containing only the record for the request. It always grants a lock request on 

a data item that is not currently locked. But if the transaction requests a lock 

on an item on which a lock is currently held, the lock manager grants the 

request only if it is compatible with the locks that are currently held, and all 

earlier requests have been granted already. Otherwise the request has to 

wait. 

 

• When the lock manager receives an unlock message from a transaction, 

it deletes the record for that data item in the linked list corresponding to that 

transaction. It tests the record that follows, if any, as described in the 

previous paragraph, to see if that request can now be granted. If it can, the 

lock manager grants that request, and processes the record following it, if 

any, similarly, and so on. 
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• If a transaction aborts, the lock manager deletes any waiting request made 

by the transaction. Once the database system has taken appropriate actions 

to undo the transaction, it releases all locks held by the aborted transaction. 

 
 

Fig: 2.2.18 Lock table 

 

This algorithm guarantees freedom from starvation for lock 

requests, since a request can never be granted while a request received 

earlier is waiting to be granted. 
 

4.3.1 DBMS RELIABILITY 
 

 

We have referred to “reliability” and “availability” of the database 

a number of times so far without defining these terms precisely. 

Specifically, we mentioned these terms in conjunction with data replication, 

because the principle method of building a reliable system is to provide 

redundancy in system components. However, the distribution of the 

database or the replication of data items is not sufficient to make the 

distributed DBMS reliable. A number of protocols need to be implemented 

within the DBMS to exploit this distribution and replication in order to 

make operations more reliable. A reliable distributed database management 

system is one that can continue to process user requests even when the 

underlying system is unreliable. In other words, even when components of 

the distributed computing environment fail, a reliable 
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distributed DBMS should be able  to continue executing user  requests 

without violating database consistency. 

 

Too often, the terms reliability and availability are used loosely in 

literature. Even among the researchers in the area of reliable computer 

systems, the definitions of these terms sometimes vary. In this section, we 

give precise definitions of a number of concepts that are fundamental to an 

understanding and study of reliable systems. 
 

4.3.2 DEFINITIONS AND BASIC CONCEPTS 
 

 

Reliability refers to a system that consists of a set of components. 

The system has a state, which changes as the system operates. The behavior 

of the system in providing response to all the possible external stimuli is 

laid out in an authoritative specification of its behavior. The specification 

indicates the valid behavior of each system state. Any deviation of a system 

from the behavior described in the specification is considered a failure. For 

example, in a distributed transaction manager the specification may state 

that only serializable schedules for the execution of concurrent transactions 

should be generated. If the transaction manager generates a non-serializable 

schedule, we say that it has failed. 

 

Each failure obviously needs to be traced back to its cause. Failures 

in a system can be attributed to deficiencies either in the components that 

make it up, or in the design, that is, how these components are put together. 

Each state that a reliable system goes through is valid in the sense that the 

state fully meets its specification. However, in an unreliable system, it is 

possible that the system may get to an internal state that may not obey its 

specification. Further transitions from this state would eventually cause a 

system failure. Such internal states are called erroneous states; the part of 

the state that is incorrect is called an error in the system. Any error in the 

internal states of the components of a system or in the design of a system is 

called a fault in the system. Thus, a fault causes an error that results in a 

system failure (Figure 12.1). 

 

 

 

Fig: 2.3.1 Chain of Events Leading to System Failure Reliability 

refers to the probability that the system under 

consideration does not experience any failures in a given time interval. It is 

typically used to describe systems that cannot be repaired (as in space- 

based computers), or where the operation of the system is so critical that 

no downtime for repair can be tolerated. Formally, the reliability of a 

system, R(t), is defined as the following conditional probability: 
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4.3.3 LOCAL RECOVERY MANAGEMENT 
 

 

In this section we discuss the functions performed by the local 

recovery manager (LRM) that exists at each site. These functions maintain 

the atomicity and durability properties of local transactions. They relate to 

the execution of the commands that are passed to the LRM, which are begin 

transaction, read, write, commit, and abort. Later in this section we 

introduce a new command into the LRM’s repertoire that initiates recovery 

actions after a failure. Note that in this section we discuss the execution of 

these commands in a centralized environment. The complications 

introduced in distributed databases are addressed in the upcoming sections. 

 

Architectural Considerations 

 

It is again time to use our architectural model and discuss the 

specific interface between the LRM and the database buffer manager (BM). 

The simple DP implementation that was given earlier will be enhanced with 

the reliability protocols discussed in this section. Also remember that all 

accesses to the database are via the database buffer 
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manager. The detailed discussion of the algorithms that the buffer manager 

implements is beyond the scope of this book; we provide a summary later in 

this subsection. Even without these details, we can still specify the interface 

and its function, as depicted in Figure 2.3.2 In this discussion we assume 

that the database is stored permanently on secondary storage, which in this 

context is called the stable storage [Lampson and Sturgis, 1976]. The 

stability of this storage medium is due to its robustness to failures. A stable 

storage device would experience considerably less-frequent failures than 

would a non-stable storage device. In today’s technology, stable storage is 

typically implemented by means of duplexed magnetic disks which store 

duplicate copies of data that are always kept mutually consistent (i.e., the 

copies are identical). We call the version of the database that is kept on 

stable storage the stable database. The unit of storage and access of the 

stable database is typically a page. The database buffer manager keeps some 

of the recently accessed data in main memory buffers. This is done to 

enhance access performance. Typically, the buffer is divided into pages that 

are of the same size as the stable database pages. The part of the database 

that is in the database buffer is called the volatile database. It is important 

to note that the LRM executes the operations on behalf of a transaction only 

on the volatile database, which, at a later time, is written back to the stable 

database. 
 

Fig: 2.3.2 Interface between the Local Recovery Manager and the Buffer 

Manager 
 

When the LRM wants to read a page of data4 on behalf of a 

transaction—strictly speaking, on behalf of some operation of a 

transaction—it issues a fetch command, indicating the page that it wants to 

read. The buffer manager checks to see if that page is already in the buffer 

(due to a previous fetch command from another transaction) and if so, 

makes it available for that transaction; if not, it reads the page from the 

stable database into an empty database buffer. If no empty buffers exist, it 

selects one of the buffer pages to write back to stable storage and reads the 

requested stable database page into that buffer. There are a number of 

different algorithms by which the buffer manager may choose the buffer 

page to be replaced; these are discussed in standard database textbooks. The 

buffer manager also provides the interface by which the LRM can 
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actually force it to write back some of the buffer pages. This can be 

accomplished by means of the flush command, which specifies the buffer 

pages that the LRM wants to be written back. We should indicate that 

different LRM implementations may or may not use this forced writing. 

This issue is discussed further in subsequent sections. As its interface 

suggests, the buffer manager acts as a conduit for all access to the database 

via the buffers that it manages. It provides this function by fulfilling three 

tasks: 

 

1. Searching the buffer pool for a given page; 

 

2. If it is not found in the buffer, allocating a free buffer page and loading 

the buffer page with a data page that is brought in from secondary storage; 

 

3. If no free buffer pages are available, choosing a buffer page for 

replacement. 

 

Recovery Information 

 

In this section we assume that only system failures occur. We defer 

the discussion of techniques for recovering from media failures until later. 

Since we are dealing with centralized database recovery, communication 

failures are not applicable. When a system failure occurs, the volatile 

database is lost. Therefore, the DBMS has to maintain some information 

about its state at the time of the failure in order to be able to bring the 

database to the state that it was in when the failure occurred. We call this 

information the recovery information. The recovery information that the 

system maintains is dependent on the method of executing updates. Two 

possibilities are in-place updating and out-of-place updating. In-place 

updating physically changes the value of the data item in the stable 

database. As a result, the previous values are lost. Out-of-place updating, 

on the other hand, does not change the value of the data item in the stable 

database but maintains the new value separately. Of course, periodically, 

these updated values have to be integrated into the stable database. We 

should note that the reliability issues are somewhat simpler if in-place 

updating is not used. However, most DBMS use it due to its improved 

performance. 
 

4.3.4 IN-PLACE UPDATE 
 

 

Since in-place updates cause previous values of the affected data 

items to be lost, it is necessary to keep enough information about the 

database state changes to facilitate the recovery of the database to a 

consistent state following a failure. This information is typically maintained 

in a database log. Thus each update transaction not only changes the 

database but the change is also recorded in the database log (Figure 2.3.3). 

The log contains information necessary to recover the database state 

following a failure. 



61  

 

Fig: 2.3.2 Update Operation Execution 

 

For the following discussion assume that the LRM and buffer 

manager algorithms are such that the buffer pages are written back to the 

stable database only when the buffer manager needs new buffer space. In 

other words, the flush command is not used by the LRM and the decision to 

write back the pages into the stable database is taken at the discretion of the 

buffer manager. Now consider that a transaction T1 had completed (i.e., 

committed) before the failure occurred. The durability property of 

transactions would require that the effect os T1 be reflected in the database. 

However, it is possible that the volatile database pages that have been 

updated by T1 may not have been written back to the stable database at the 

time of the failure. Therefore, upon recovery, it is important to be able to 

redo the operations of T1. This requires some information to be stored in 

the database log about the effects of T1. Given this information, it is 

possible to recover the database from its “old” state to the “new” state that 

reflects the effects of T1 (Figure 2.3.3). 
 

Fig: 2.3.3 REDO Action 
 

Now consider another transaction, T2, that was still running when 

the failure occurred. The atomicity property would dictate that the stable 

database not contain any effects of T2. It is possible that the buffer manager 

may have had to write into the stable database some of the volatile database 

pages that have been updated by T2. Upon recovery from failures it is 

necessary to undo the operations of T2. 5 Thus the recovery information 

should include sufficient data to permit the undo by taking the “new” 

database state that reflects partial effects of T2 and recovers the “old” state 

that existed at the start of T2 (Figure 2.3.4). We should indicate that the undo 

and redo actions are assumed to be idempotent. In other words, their 

repeated application to a transaction would be equivalent to performing 

them once. Furthermore, the undo/redo actions form the basis 
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of different methods of executing the commit commands. The contents of 

the log may differ according to the implementation. However, the following 

minimal information for each transaction is contained in almost all database 

logs: a begin transaction record, the value of the data item before the update 

(called the before image), the updated value of the data item (called the after 

image), and a termination record indicating the transaction termination 

condition (commit, abort). The granularity of the before and after images 

may be different, as it is possible to log entire pages or some smaller unit. 

As an alternative to this form of state logging, operational logging, as in 

ARIES [Haderle et al., 1992], may be supported where the operations that 

cause changes to the database are logged rather than the before and after 

images. 

 
Fig: 2.3.4 UNDO Action 

 

The log is also maintained in main memory buffers (called log 

buffers) and written back to stable storage (called stable log) similar to the 

database buffer pages (Figure 2.3.5). The log pages can be written to 

stable storage in one of two ways. They can be written synchronously (more 

commonly known as forcing a log) where the addition of each log record 

requires that the log be moved from main memory to stable storage. They 

can also be written asynchronously, where the log is moved to stable storage 

either at periodic intervals or when the buffer fills up. When the log is 

written synchronously, the execution of the transaction is suspended until 

the write is complete. This adds some delay to the response-time 

performance of the transaction. On the other hand, if a failure occurs 

immediately after a forced write, it is relatively easy to recover to a 

consistent database state. 
 

Fig:4.3.5 Logging Interface 
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Whether the log is written synchronously or asynchronously, one 

very important protocol has to be observed in maintaining logs. Consider a 

case where the updates to the database are written into the stable storage 

before the log is modified in stable storage to reflect the update. If a failure 

occurs before the log is written, the database will remain in updated form, 

but the log will not indicate the update that makes it impossible to recover 

the database to a consistent and up-to-date state. Therefore, the stable log is 

always updated prior to the updating of the stable database. This is known 

as the write-ahead logging (WAL) protocol [Gray, 1979] and can be 

precisely specified as follows: 

 

1. Before a stable database is updated (perhaps due to actions of a yet 

uncommitted transaction), the before images should be stored in the stable 

log. This facilitates undo. 

 

2. When a transaction commits, the after images have to be stored in the 

stable log prior to the updating of the stable database. This facilitates redo. 
 

4.3.5 OUT-OF-PLACE UPDATE 
 

 

As we mentioned above, the most common update technique is in- 

place updating. Therefore, we provide only a brief overview of the other 

updating techniques and their recovery information. Details can be found in 

[Verhofstadt, 1978] and the other references given earlier. Typical 

techniques for out-of-place updating are shadowing ([Astrahan et al., 1976; 

Gray, 1979]) and differential files [Severence and Lohman, 1976]. 

Shadowing uses duplicate stable storage pages in executing updates. Thus 

every time an update is made, the old stable storage page, called the shadow 

page, is left intact and a new page with the updated data item values is 

written into the stable database. The access path data structures are updated 

to point to the new page, which contains the current data so that subsequent 

accesses are to this page. The old stable storage page is retained for recovery 

purposes (to perform undo). 

 

Recovery based on shadow paging is implemented in System R’s 

recovery manager [Gray et al., 1981]. This implementation uses shadowing 

together with logging. In general, the method maintains each stable database 

file as a read-only file. In addition, it maintains a corresponding read-write 

differential file that stores the changes to that file. Given a logical database 

file F, let us denote its read-only part as FR and its corresponding 

differential file as DF. DF consists of two parts: an insertions part, which 

stores the insertions to F, denoted DF+, and a corresponding deletions part, 

denoted DF−. All updates are treated as the deletion of the old value and the 

insertion of a new one. Thus each logical file F is considered to be a view 

defined as F = (FR∪ DF+)−DF−. Periodically, the differential file needs to 

be merged with the read-only base file. Recovery schemes based on this 

method simply use private differential files for each transaction, which 

are then merged with the 
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differential files of each file at commit time. Thus recovery from failures 

can simply be achieved by discarding the private differential files of non- 

committed transactions. There are studies that indicate that the shadowing 

and differential files approaches may be advantageous in certain 

environments. One study by Agrawal and DeWitt [1985] investigates the 

performance of recovery mechanisms based on logging, differential files, 

and shadow paging, integrated with locking and optimistic (using 

timestamps) concurrency control algorithms. The results indicate that 

shadowing, together with locking, can be a feasible alternative to the more 

common log-based recovery integrated with locking if there are only large 

(in terms of the base-set size) transactions with sequential access patterns. 

Similarly, differential files integrated with locking can be a feasible 

alternative if there are medium-sized and large transactions. 
 

4.3.6 DISTRIBUTED RELIABILITY PROTOCOLS 
 

 

As with local reliability protocols, the distributed versions aim to 

maintain the atomicity and durability of distributed transactions that execute 

over a number of databases. The protocols address the distributed execution 

of the begin transaction, read, write, abort, commit, and recover commands. 

At the outset we should indicate that the execution of the begin transaction, 

read, and write commands does not cause any significant problems. Begin 

transaction is executed in exactly the same manner as in the centralized case 

by the transaction manager at the originating site of the transaction. At each 

site, the commands are executed in the manner described in Section. 

Similarly, abort is executed by undoing its effects. The implementation of 

distributed reliability protocols within the architectural model we have 

adopted in this book raises a number of interesting and difficult issues. For 

the time being, we adopt a common abstraction: we assume that at the 

originating site of a transaction there is a coordinator process and at each 

site where the transaction executes there are participant processes. Thus, the 

distributed reliability protocols are implemented between the coordinator 

and the participants. 

 

Components of Distributed Reliability Protocols 

 

The reliability techniques in distributed database systems consist of 

commit, termination, and recovery protocols. Recall from the preceding 

section that the commit and recovery protocols specify how the commit and 

the recover commands are executed. Both of these commands need to be 

executed differently in a distributed DBMS than in a centralized DBMS. 

Termination protocols are unique to distributed systems. Assume that 

during the execution of a distributed transaction, one of the sites involved 

in the execution fails; we would like the other sites to terminate the 

transaction somehow. The techniques for dealing with this situation are 

called termination protocols. Termination and recovery protocols are two 

opposite faces of the recovery problem: given a site failure, termination 

protocols address how the operational sites deal with the 
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failure, whereas recovery protocols deal with the procedure that the process 

(coordinator or participant) at the failed site has to go through to recover its 

state once the site is restarted. In the case of network partitioning, the 

termination protocols take the necessary measures to terminate the active 

transactions that execute at different partitions, while the recovery protocols 

address the establishment of mutual consistency of replicated databases 

following reconnection of the partitions of the network. The primary 

requirement of commit protocols is that they maintain the atomicity of 

distributed transactions. This means that even though the execution of the 

distributed transaction involves multiple sites, some of which might fail 

while executing, the effects of the transaction on the distributed database is 

all-or-nothing. This is called atomic commitment. We would prefer the 

termination protocols to be non- blocking. A protocol is non-blocking if it 

permits a transaction to terminate at the operational sites without waiting 

for recovery of the failed site. This would significantly improve the 

response-time performance of transactions. We would also like the 

distributed recovery protocols to be independent. Independent recovery 

protocols determine how to terminate a transaction that was executing at 

the time of a failure without having to consult any other site. Existence of 

such protocols would reduce the number of messages that need to be 

exchanged during recovery. Note that the existence of independent recovery 

protocols would imply the existence of non-blocking termination protocols, 

but the reverse is not true. 
 

4.3.7 TWO PHASE COMMIT PROTOCOL 
 

 

Two-phase commit (2PC) is a very simple and elegant protocol that 

ensures the atomic commitment of distributed transactions. It extends the 

effects of local atomic commit actions to distributed transactions by 

insisting that all sites involved in the execution of a distributed transaction 

agree to commit the transaction before its effects are made permanent. 

There are a number of reasons why such synchronization among sites is 

necessary. First, depending on the type of concurrency control algorithm 

that is used, some schedulers may not be ready to terminate a transaction. 

For example, if a transaction has read a value of a data item that is updated 

by another transaction that has not yet committed, the associated scheduler 

may not want to commit the former. Of course, strict concurrency control 

algorithms that avoid cascading aborts would not permit the updated value 

of a data item to be read by any other transaction until the updating 

transaction terminates. This is sometimes called the recoverability 

condition. 

 

Another possible reason why a participant may not agree to commit 

is due to deadlocks that require a participant to abort the transaction. Note 

that, in this case, the participant should be permitted to abort the transaction 

without being told to do so. This capability is quite important and is called 

unilateral abort. A brief description of the 2PC protocol that does not 

consider failures is as follows. Initially, the coordinator writes a begin 

commit record in its log, sends a “prepare” 
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message to all participant sites, and enters the WAIT state. When a 

participant receives a “prepare” message, it checks if it could commit the 

transaction. If so, the participant writes a ready record in the log, sends a 

“vote-commit” message to the coordinator, and enters READY state; 

otherwise, the participant writes an abort record and sends a “vote-abort” 

message to the coordinator. If the decision of the site is to abort, it can forget 

about that transaction, since an abort decision serves as a veto (i.e., 

unilateral abort). After the coordinator has received a reply from every 

participant, it decides whether to commit or to abort the transaction. If 

even one participant has registered a negative vote, the coordinator has to 

abort the transaction globally. So it writes an abort record, sends a “global- 

abort” message to all participant sites, and enters the ABORT state; 

otherwise, it writes a commit record, sends a “global-commit” message to 

all participants, and enters the COMMIT state. The participants either 

commit or abort the transaction according to the coordinator’s instructions 

and send back an acknowledgment, at which point the coordinator 

terminates the transaction by writing an end of transaction record in the log. 

 

Note the manner in which the coordinator reaches a global 

termination decision regarding a transaction. Two rules govern this 

decision, which, together, are called the global commit rule: 

 

1. If even one participant votes to abort the transaction, the coordinator has 

to reach a global abort decision. 

 

2. If all the participants vote to commit the transaction, the coordinator has 

to reach a global commit decision. The operation of the 2PC protocol 

between a coordinator and one participant in the absence of failures is 

depicted in Figure 2.3.6, where the circles indicate the states and the dashed 

lines indicate messages between the coordinator and the participants. The 

labels on the dashed lines specify the nature of the message. 
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Fig:4.3.6 2PC Protocol Actions 

 

A few important points about the 2PC protocol that can be observed 

from Figure 2.3.6 are as follows. First, 2PC permits a participant to 

unilaterally abort a transaction until it has decided to register an affirmative 

vote. Second, once a participant votes to commit or abort a transaction, it 

cannot change its vote. Third, while a participant is in the READY state, it 

can move either to abort the transaction or to commit it, depending on the 

nature of the message from the coordinator. Fourth, the global termination 

decision is taken by the coordinator according to the global commit rule. 

Finally, note that the coordinator and participant processes enter certain 

states where they have to wait for messages from one another. To guarantee 

that they can exit from these states and terminate, timers are used. Each 

process sets its timer when it enters a state, and if the expected message 

is not received before the timer runs out, the process times out and invokes 

its timeout protocol (which will be discussed later). There are a number of 

different communication paradigms that can be employed in implementing 

a 2PC protocol. The one discussed above and depicted in Figure 2.3.6 is 

called a centralized 2PC since the communication is only between the 

coordinator and the participants; the participants do not communicate 

among themselves. This communication structure, which is the basis of our 

subsequent discussions in this chapter, is depicted more clearly in Figure 

2.3.7. 
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Fig: 4.3.6 Centralized 2PC Communication Structure 

 

Another alternative is linear 2PC (also called nested 2PC [Gray, 

1979]) where participants can communicate with one another. There is an 

ordering between the sites in the system for the purposes of communication. 

Let us assume that the ordering among the sites that participate in the 

execution of a transaction are 1, ..., N, where the coordinator is the first one 

in the order. The 2PC protocol is implemented by a forward communication 

from the coordinator (number 1) to N, during which the first phase is 

completed, and by a backward communication from N to the coordinator, 

during which the second phase is completed. Thus linear 2PC operates in 

the following manner. The coordinator sends the “prepare” message to 

participant 2. If participant 2 is not ready to commit the transaction, it sends 

a “vote-abort” message (VA) to participant 3 and the transaction is aborted 

at this point (unilateral abort by 2). If, on the other hand, participant 2 agrees 

to commit the transaction, it sends a “votecommit” message (VC) to 

participant 3 and enters the READY state. This process continues until a 

“vote-commit” vote reaches participant N. This is the end of the first phase. 

If N decides to commit, it sends back to N −1 “global-commit” (GC); 

otherwise, it sends a “global- abort” message (GA). Accordingly, the 

participants enter the appropriate state (COMMIT or ABORT) and 

propagate the message back to the coordinator. Linear 2PC, whose 

communication structure is depicted in Figure 2.3.7, incurs fewer messages 

but does not provide any parallelism. Therefore, it suffers from low 

response-time performance. 
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Fig: 4.3.7 Linear 2PC Communication Structure,VC vote.commit; VA 

vote.abort; GC global.commit; GA global.abort 

 

Another popular communication structure for implementation of the 

2PC protocol involves communication among all the participants during the 

first phase of the protocol so that they all independently reach their 

termination decisions with respect to the specific transaction. This version, 

called distributed 2PC, eliminates the need for the second phase of the 

protocol since the participants can reach a decision on their own. It operates 

as follows. The coordinator sends the prepare message to all participants. 

Each participant then sends its decision to all the other participants (and to 

the coordinator) by means of either a “vote-commit” or a “vote-abort” 

message. Each participant waits for messages from all the other participants 

and makes its termination decision according to the global commit rule. 

Obviously, there is no need for the second phase of the protocol (someone 

sending the global abort or global commit decision to the others), since each 

participant has independently reached that decision at the end of the first 

phase. The communication structure of distributed commit is depicted in 

Figure 2.3.8. One point that needs to be addressed with respect to the last 

two versions of 2PC implementation is the following. A participant has to 

know the identity of either the next participant in the linear ordering (in case 

of linear 2PC) or of all the participants (in case of distributed 2PC). This 

problem can be solved by attaching the list of participants to the prepare 

message that is sent by the coordinator. Such an issue does not arise in the 

case of centralized 2PC since the coordinator clearly knows who the 

participants are. The algorithm for the centralized execution of the 2PC 

protocol by the coordinator is given in Algorithm 12.1, and the algorithm 

for participants is given in Algorithm 12.2. 
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Fig: 4.3.8 Distributed 2PC Communication Structure 
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4.3.8 THREE PHASES COMMIT PROTOCOL 
 

The three-phase commit protocol (3PC) [Skeen, 1981] is designed 

as a non-blocking protocol. We will see in this section that it is indeed non-

blocking when failures are restricted to site failures. Let us first consider the 

necessary and sufficient conditions for designing non- blocking atomic 

commitment protocols. A commit protocol that is synchronous within one 

state transition is non-blocking if and only if its state transition diagram 

contains neither of the following: 

 

1. No state that is “adjacent” to both a commit and an abort state. 

 

2. No non-committable state that is “adjacent” to a commit state ([Skeen, 

1981; Skeen and Stonebraker, 1983]). The term adjacent here means that it 

is possible to go from one state to the other with a single state transition 

 

Consider the COMMIT state in the 2PC protocol. If any process is 

in this state, we know that all the sites have voted to commit the transaction. 

Such states are called committable. There are other states in the 2PC 

protocol that are non-committable. The one we are interested in is the 

READY state, which is non-committable since the existence of a process in 

this state does not imply that all the processes have voted to commit the 

transaction. It is obvious that the WAIT state in the coordinator and the 

READY state in the participant 2PC protocol violate the non-blocking 

conditions we have stated above. Therefore, one might be able to make the 

following modification to the 2PC protocol to satisfy the conditions and turn 

it into a non-blocking protocol. We can add another state between the 

WAIT (and READY) and COMMIT states which serves as a buffer state 

where the process is ready to commit (if that is the final decision) but has 

not yet committed. The state transition diagrams for the coordinator and the 

participant in this protocol are depicted in Figure 2.3.9. This is called the 

three-phase commit protocol (3PC) because there are three state transitions 

from the INITIAL state to a COMMIT state. The execution of the protocol 

between the coordinator and one participant is depicted in Figure. Note that 

this is identical to Figure except for the addition of the PRECOMMIT state. 

Observe that 3PC is also a protocol where all the states are synchronous 

within one state transition. Therefore, the foregoing conditions for non-

blocking 2PC apply to 3PC. 
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Fig: 4.3.9 State Transitions in 3PC Protocol 

 

It is possible to design different 3PC algorithms depending on the 

communication topology. The one given in Figure is centralized. It is also 

straightforward to design a distributed 3PC protocol. A linear 3PC protocol 

is somewhat more involved, so we leave it as an exercise. 
 

4.4.1 PARALLEL DATABASE SYSTEM 
 

 

A parallel computer, or multiprocessor, is a special kind of 

distributed system made of a number of nodes (processors, memories and 

disks) connected by a very fast network within one or more cabinets in the 

same room. The main idea is to build a very powerful computer out of many 

small computers, each with a very good cost/performance ratio, at a much 

lower cost than equivalent mainframe computers. As discussed in Chapter 

1, data distribution can be exploited to increase performance (through 

parallelism) and availability (through replication). This principle can be 

used to implement parallel database systems, i.e., database systems on 

parallel computers [DeWitt and Gray, 1992; Valduriez, 1993]. Parallel 

database systems can exploit the parallelism in data management in order 

to deliver high-performance and high-availability database servers. Thus, 

they can support very large databases with very high loads. Most of the 

research on parallel database systems has been done in the context of the 

relational model that provides a good basis for data-based parallelism. In 

this chapter, we present the parallel database system approach as a solution 

to high performance and high-availability data management. We discuss the 

advantages and disadvantages of the various parallel system architectures 

and we present the generic implementation techniques. 
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Implementation of parallel database systems naturally relies on 

distributed database techniques. However, the critical issues are data 

placement, parallel query processing, and load balancing because the 

number of nodes may be much higher than in a distributed DBMS. 

Furthermore, a parallel computer typically provides reliable, fast 

communication that can be exploited to efficiently implement distributed 

transaction management and replication. Therefore, although the basic 

principles are the same as in distributed DBMS, the techniques for parallel 

database systems are fairly different. 
 

4.4.2 DEFINITION OF PARALLEL DATABASE 

SYSTEMS 
 

 

Parallel processing exploits multiprocessor computers to run 

application programs by using several processors cooperatively, in order 

to improve performance. Its prominent use has long been in scientific 

computing by improving the response time of numerical applications 

[Kowalik, 1985; Sharp, 1987]. The developments in both general-purpose 

parallel computers using standard microprocessors and parallel 

programming techniques [Osterhaug, 1989] have enabled parallel 

processing to break into the data processing field. Parallel database systems 

combine database management and parallel processing to increase 

performance and availability. Note that performance was also the objective 

of database machines in the 70s and 80s [Hsiao, 1983]. The problem faced 

by conventional database management has long been known as “I/O 

bottleneck” [Boral and DeWitt, 1983], induced by high disk access time 

with respect to main memory access time (typically hundreds of thousands 

times faster). 

 

A parallel database system can be loosely defined as a DBMS 

implemented on a parallel computer. This definition includes many 

alternatives ranging from the straightforward porting of an existing DBMS, 

which may require only rewriting the operating system interface routines, 

to a sophisticated combination of parallel processing and database system 

functions into a new hardware/software architecture. As always, we have 

the traditional trade-off between portability (to several platforms) and 

efficiency. The sophisticated approach is better able to fully exploit the 

opportunities offered by a multiprocessor at the expense of portability. 

Interestingly, this gives different advantages to computer manufacturers and 

software vendors. It is therefore important to characterize the main points 

in the space of alternative parallel system architectures. In order to do so, 

we will make precise the parallel database system solution and the necessary 

functions. This will be useful in comparing the parallel database system 

architectures. The objectives of parallel database systems are covered by 

those of distributed DBMS (performance, availability, extensibility). 

Ideally, a parallel database system should provide the following advantages. 
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1. High-performance. This can be obtained through several 

complementary solutions: database-oriented operating system support, 

parallel data management, query optimization, and load balancing. Having 

the operating system constrained and “aware” of the specific database 

requirements (e.g., buffer management) simplifies the implementation of 

low-level database functions and therefore decreases their cost. For 

instance, the cost of a message can be significantly reduced to a few hundred 

instructions by specializing the communication protocol. Parallelism can 

increase throughput, using inter-query parallelism, and decrease transaction 

response times, using intra-query parallelism. However, decreasing the 

response time of a complex query through large- scale parallelism may well 

increase its total time (by additional communication) and hurt throughput 

as a side-effect. Therefore, it is crucial to optimize and parallelize queries 

in order to minimize the overhead of parallelism, e.g., by constraining the 

degree of parallelism for the query. Load balancing is the ability of the 

system to divide a given workload equally among all processors. Depending 

on the parallel system architecture, it can be achieved statically by 

appropriate physical database design or dynamically at run-time. 

 

2. High-availability. Because a parallel database system consists of many 

redundant components, it can well increase data availability and fault- 

tolerance. In a highly-parallel system with many nodes, the probability of 

a node failure at any time can be relatively high. Replicating data at several 

nodes is useful to support failover, a fault-tolerance technique that enables 

automatic redirection of transactions from a failed node to another node that 

stores a copy of the data. This provides un-interrupted service to users. 

However, it is essential that a node failure does not crate load imbalance, 

e.g., by doubling the load on the available copy. Solutions to this problem 

require partitioning copies in such a way that they can also be accessed in 

parallel. 

 

3. Extensibility. In a parallel system, accommodating increasing database 

sizes or increasing performance demands (e.g., throughput) should be easier. 

Extensibility is the ability to expand the system smoothly by adding 

processing and storage power to the system. Ideally, the parallel database 

system should demonstrate two extensibility advantages [DeWitt and Gray, 

1992]: linear speedup and linear scale up see Figure 2.4.1. Linear speedup 

refers to a linear increase in performance for a constant database size while 

the number of nodes (i.e., processing and storage power) are increased 

linearly. Linear scaleup refers to a sustained performance for a linear 

increase in both database size and number of nodes. Furthermore, extending 

the system should require minimal reorganization of the existing database. 
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Fig: 4.4.1 Extensibility Metrics 

 

Functional Architecture 

 

Assuming client/server architecture, the functions supported by a 

parallel database system can be divided into three subsystems much like in 

a typical DBMS. The differences, though, have to do with implementation 

of these functions, which must now deal with parallelism, data partitioning 

and replication, and distributed transactions. Depending on the architecture, 

a processor node can support all (or a subset) of these subsystems. Figure 

2.4.2 shows the architecture using these subsystems due to Bergsten et al. 

[1991]. 

 

1. Session Manager. It plays the role of a transaction monitor, providing 

support for client interactions with the server. In particular, it performs the 

connections and disconnections between the client processes and the two 

other subsystems. Therefore, it initiates and closes user sessions (which may 

contain multiple transactions). In case of OLTP sessions, the session 

manager is able to trigger the execution of pre-loaded transaction code 

within data manager modules. 

 

2. Transaction Manager. It receives client transactions related to query 

compilation and execution. It can access the database directory that holds 

all meta-information about data and programs. The directory itself should 

be managed as a database in the server. Depending on the transaction, it 

activates the various compilation phases, triggers query execution, and 

returns the results as well as error codes to the client application. Because 

it supervises transaction execution and commit, it may trigger the recovery 

procedure in case of transaction failure. To speed up query execution, it may 

optimize and parallelize the query at compile-time. 

 

3. Data Manager. It provides all the low-level functions needed to run 

compiled queries in parallel, i.e., database operator execution, parallel 

transaction support, cache management, etc. If the transaction manager is 

able to compile dataflow control, then synchronization and communication 

among data manager modules is possible. Otherwise, transaction control 

and synchronization must be done by a transaction manager module. 
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Fig: 4.4.2 General Architecture of a Parallel Database System 

 
 

Parallel DBMS Architectures 

 

As any system, a parallel database system represents a compromise 

in design choices in order to provide the aforementioned advantages with 

a good cost/performance. One guiding design decision is the way the main 

hardware elements, i.e., processors, main memory, and disks, are 

connected through some fast interconnection network. There are three 

basic parallel computer architectures depending on how main memory or 

disk is shared: shared-memory, shared-disk and shared-nothing. Hybrid 

architectures such as NUMA or cluster try to combine the benefits of the 

basic architectures. In the rest of this section, when describing parallel 

architectures, we focus on the four main hardware elements: interconnect, 

processors (P), main memory (M) and disks. For simplicity, we ignore other 

elements such as processor cache and I/O bus. 

 

Shared-Memory 

 

In the shared-memory approach (see Figure 2.4.3), any processor 

has access to any memory module or disk unit through a fast interconnect 

(e.g., a high-speed bus or a cross-bar switch). All the processors are under 

the control of a single operating system Current mainframe designs and 

symmetric multiprocessors (SMP) follow this approach. Examples of 

shared-memory parallel database systems include XPRS [Hong, 1992], 

DBS3 [Bergsten et al., 1991], and Volcano [Graefe, 1990], as well as 



77  

portings of major commercial DBMSs on SMP. In a sense, the 

implementation of DB2 on an IBM3090 with 6 processors [Cheng et al., 

1984] was the first example. All shared-memory parallel database products 

today can exploit inter-query parallelism to provide high transaction 

throughput and intra-query parallelism to reduce response time of decision-

support queries. 

 
Fig: 4.4.3 Shared-Memory Architecture 

 

Shared-memory has two strong advantages: simplicity and load 

balancing. Since meta-information (directory) and control information (e.g., 

lock tables) can be shared by all processors, writing database software is 

not very different than for single processor computers. In particular, inter-

query parallelism comes for free. Intra-query parallelism requires some 

parallelization but remains rather simple. Load balancing is easy to achieve 

since it can be achieved at run-time using the shared- memory by allocating 

each new task to the least busy processor. Shared- memory has three 

problems: high cost, limited extensibility and low availability. High cost is 

incurred by the interconnect that requires fairly complex hardware because 

of the need to link each processor to each memory module or disk. With 

faster processors (even with larger caches), conflicting accesses to the 

shared-memory increase rapidly and degrade performance [Thakkar and 

Sweiger, 1990]. Therefore, extensibility is limited to a few tens of 

processors, typically up to 16 for the best cost/performance using 4-

processor boards. Finally, since the memory space is shared by all 

processors, a memory fault may affect most processors thereby hurting 

availability. The solution is to use duplex memory with a redundant 

interconnect. 

 

Shared-Disk 

 

In the shared-disk approach (see Figure 2.4.4), any processor has 

access to any disk unit through the interconnect but exclusive (non-shared) 

access to its main memory. Each processor-memory node is under the 

control of its own copy of the operating system. Then, each processor can 

access database pages on the shared disk and cache them into its own 

memory. Since different processors can access the same page in conflicting 

update modes, global cache consistency is needed. This is typically 

achieved using a distributed lock manager that can be implemented using 

the  techniques. The first parallel DBMS  that used 
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shared-disk is Oracle with an efficient implementation of a distributed lock 

manager for cache consistency. Other major DBMS vendors such as IBM, 

Microsoft and Sybase provide shared-disk implementations 

 
Fig; 4.4.4 Shared-Disk Architecture 

 

Shared-disk has a number of advantages: lower cost, high 

extensibility, load balancing, availability, and easy migration from 

centralized systems. The cost of the interconnect is significantly less than 

with shared-memory since standard bus technology may be used. Given that 

each processor has enough main memory, interference on the shared disk 

can be minimized. Thus, extensibility can be better, typically up to a 

hundred processors. Since memory faults can be isolated from other nodes, 

availability can be higher. Finally, migrating from a centralized system to 

shared-disk is relatively straightforward since the data on disk need not be 

reorganized. Shared-disk suffers from higher complexity and potential 

performance problems. It requires distributed database system protocols, 

such as distributed locking and two-phase commit. As we have discussed in 

previous chapters, these can be complex. Furthermore, maintaining cache 

consistency can incur high communication overhead among the nodes. 

Finally, access to the shared-disk is a potential bottleneck. 

 

Shared-Nothing 

 

In the shared-nothing approach (see Figure 2.4.5), each processor 

has exclusive access to its main memory and disk unit(s). Similar to shared-

disk, each processor memory-disk node is under the control of its own copy 

of the operating system. Then, each node can be viewed as a local site (with 

its own database and software) in a distributed database system. Therefore, 

most solutions designed for distributed databases such as database 

fragmentation, distributed transaction management and distributed query 

processing may be reused. Using a fast interconnect, it is possible to 

accommodate large numbers of nodes. As opposed to SMP, this 

architecture is often called Massively Parallel Processor (MPP). Many 

research prototypes have adopted the shared-nothing architecture, e.g., 

BUBBA [Boral et al., 1990], EDS [Group, 1990], GAMMA [DeWitt et al., 

1986], GRACE [Fushimi et al., 1986], and PRISMA [Apers et al., 1992], 

because it can scale. The first major parallel DBMS product was Teradata’s 

Database Computer that could accommodate a thousand processors in its 

early version. Other major DBMS vendors such as IBM, Microsoft and 

Sybase provide shared-nothing implementations. 
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Fig: 4.4.5 Shared-Nothing Architecture 

As demonstrated by the existing products, shared-nothing has three 

main virtues: lower cost, high extensibility, and high availability. The cost 

advantage is better than that of shared-disk that requires a special 

interconnect for the disks. By implementing a distributed database design 

that favors the smooth incremental growth of the system by the addition of 

new nodes, extensibility can be better (in the thousands of nodes). With 

careful partitioning of the data on multiple disks, almost linear speedup 

and linear scale-up could be achieved for simple workloads. Finally, by 

replicating data on multiple nodes, high availability can also be achieved. 

Shared-nothing is much more complex to manage than either shared- 

memory or shared-disk. Higher complexity is due to the necessary 

implementation of distributed database functions assuming large numbers 

of nodes. In addition, load balancing is more difficult to achieve because it 

relies on the effectiveness of database partitioning for the query workloads. 

Unlike shared-memory and shared-disk, load balancing is decided based on 

data location and not the actual load of the system. Furthermore, the 

addition of new nodes in the system presumably requires reorganizing the 

database to deal with the load balancing issues. 

 

Hybrid Architectures 

 

Various possible combinations of the three basic architectures are 

possible to obtain different trade-offs between cost, performance, 

extensibility, availability, etc. Hybrid architectures try to obtain the 

advantages of different architectures: typically the efficiency and simplicity 

of shared-memory and the extensibility and cost of either shared disk or 

shared nothing. In this section, we discuss two popular hybrid architectures: 

NUMA and cluster. 

 

NUMA. With shared-memory, each processor has uniform memory 

access (UMA), with constant access time, since both the virtual memory 

and the physical memory are shared. One major advantage is that the 

programming model based on shared virtual memory is simple. With either 

shared-disk or shared-nothing, both virtual and shared memory are 

distributed, which yields scalability to large numbers of processors. The 

objective of NUMA is to provide a shared-memory programming model 

and all its benefits, in a scalable architecture with distributed memory. The 

term NUMA reflects the fact that an access to the (virtually) shared memory 

may have a different cost depending on whether the physical memory is 

local or remote to the processor. The most successful class of NUMA 

multiprocessors is Cache Coherent NUMA (CC-NUMA) 
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[Goodman and Woest, 1988; Lenoski et al., 1992]. With CC-NUMA, the 

main memory is physically distributed among the nodes as with shared- 

nothing or shared-disk. However, any processor has access to all other 

processors’ memories (see Figure 2.4.6). Each node can itself be an SMP. 

Similar to shared-disk, different processors can access the same data in a 

conflicting update mode, so global cache consistency protocols are needed. 

In order to make remote memory access efficient, the only viable solution 

is to have cache consistency done in hardware through a special consistent 

cache interconnect [Lenoski et al., 1992]. Because shared- memory and 

cache consistency are supported by hardware, remote memory access is 

very efficient, only several times (typically between 2 and 3 times) the cost 

of local access 
 

Fig: 4.4.6 Cache coherent NUMA (CC-NUMA) 
 

Most SMP manufacturers are now offering NUMA systems that can 

scale up to a hundred processors. The strong argument for NUMA is that it 

does not require any rewriting of the application software. However some 

rewriting is still necessary in the database engine (and the operating system) 

to take full advantage of access locality [Bouganim et al., 1999] 

 

Cluster 

 

A cluster is a set of independent server nodes interconnected to share 

resources and form a single system. The shared resources, called clustered 

resources, can be hardware such as disk or software such as data 

management services. The server nodes are made of off-the-shelf 

components ranging from simple PC components to more powerful SMP. 

Using many off-the-shelf components is essential to obtain the best 

cost/performance ratio while exploiting continuing progress in hardware 

components. In its cheapest form, the interconnect can be a local network. 

However, there are now fast standard interconnects for clusters (e.g., 

Myrinet and Infiniband) that provide high bandwidth (Gigabits/sec) with 

low latency for message traffic. Compared to a distributed system, a cluster 

is geographically concentrated (at a single site) and made of homogeneous 

nodes. Its architecture can be either shared nothing or shared-disk. Shared-

nothing clusters have been widely used because they can provide the best 

cost/performance ratio and scale up to very large configurations (thousands 

of nodes). However, because each disk is directly connected to a computer 

via a bus, adding or replacing cluster nodes requires disk and data 

reorganization. Shared-disk avoids such reorganization but requires disks to 

be globally accessible by the cluster nodes. There are two main 

technologies to share disks in a cluster: 
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network-attached storage (NAS) and storage-area network (SAN). A NAS 

is a dedicated device to shared disks over a network (usually TCP/IP) using 

a distributed file system protocol such as Network File System (NFS). NAS 

is well suited for low throughput applications such as data backup and 

archiving from PC’s hard disks. However, it is relatively slow and not 

appropriate for database management as it quickly becomes a bottleneck 

with many nodes. A storage area network (SAN) provides similar 

functionality but with a lower level interface. For efficiency, it uses a block-

based protocol thus making it easier to manage cache consistency (at the 

block level). In fact, disks in a SAN are attached to the network instead to 

the bus as happens in Directly Attached Storage (DAS), but otherwise they 

are handled as sharable local disks. Existing protocols for SANs extend their 

local disk counterparts to run over a network (e.g., i-SCSI extends SCSI, 

and ATA-over-Ethernet extends ATA). As a result, SAN provides high data 

throughput and can scale up to large numbers of nodes. Its only limitation 

with respect to shared-nothing is its higher cost of ownership. 

 

A cluster architecture has important advantages. It combines the 

flexibility and performance of shared-memory at each node with the 

extensibility and availability of shared-nothing or shared-disk. Furthermore, 

using off-the-shelf shared-memory nodes with a standard cluster 

interconnect makes it a cost-effective alternative to proprietary high-end 

multiprocessors such as NUMA or MPP. Finally, using SAN eases disk 

management and data placement. 
 

4.4.3 PARALLEL QUERY EVALUATION 
 

 

The objective of parallel query processing is to transform queries 

into execution plans that can be efficiently executed in parallel. This is 

achieved by exploiting parallel data placement and the various forms of 

parallelism offered by high-level queries. In this section, we first introduce 

the various forms of query parallelism. Then we derive basic parallel 

algorithms for data processing. Finally, we discuss parallel query 

optimization. 
 

4.4.4 QUERY PARALLELISM 
 

 

Parallel query execution can exploit two forms of parallelism: inter- 

and intra-query. Inter-query parallelism enables the parallel execution of 

multiple queries generated by concurrent transactions, in order to increase 

the transactional throughput. Within a query (intra-query parallelism), inter-

operator and intra-operator parallelism are used to decrease response time. 

Inter-operator parallelism is obtained by executing in parallel several 

operators of the query tree on several processors while with intra-operator 

parallelism, the same operator is executed by many processors, each one 

working on a subset of the data. Note that these two forms of parallelism 

also exist in distributed query processing 
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4.4.5 I/O PARALLELISM (DATA PARTITIONING) 
 

A shared-nothing architecture because it is the most general case and 

its implementation techniques also apply, sometimes in a simplified form, 

to other architectures. Data placement in a parallel database system exhibits 

similarities with data fragmentation in distributed databasee. An obvious 

similarity is that fragmentation can be used to increase parallelism. In what 

follows, we use the terms partitioning and partition instead of horizontal 

fragmentation and horizontal fragment, respectively, to contrast with the 

alternative strategy, which consists of clustering a relation at a single node. 

The term declustering is sometimes used to mean partitioning [Livny et al., 

1987]. Vertical fragmentation can also be used to increase parallelism and 

load balancing much as in distributed databases. Another similarity is that 

since data are much larger than programs, execution should occur, as much 

as possible, where the data reside. However, there are two important 

differences with the distributed database approach. First, there is no need to 

maximize local processing (at each node) since users are not associated with 

particular nodes. Second, load balancing is much more difficult to achieve 

in the presence of a large number of nodes. The main problem is to avoid 

resource contention, which may result in the entire system thrashing (e.g., 

one node ends up doing all the work while the others remain idle). Since 

programs are executed where the data reside, data placement is a critical 

performance issue. Data placement must be done so as to maximize system 

performance, which can be measured by combining the total amount of 

work done by the system and the response time of individual queries. In 

Chapter 8, we have seen that maximizing response time (through intra- 

query parallelism) results in increased total work due to communication 

overhead. For the same reason, inter-query parallelism results in increased 

total work. On the other hand, clustering all the data necessary to a program 

minimizes communication and thus the total work done by the system in 

executing that program. In terms of data placement, we have the following 

trade-off: maximizing response time or inter-query parallelism leads to 

partitioning, whereas minimizing the total amount of work leads to 

clustering. As we have seen in Chapter 3, this problem is addressed in 

distributed databases in a rather static manner. The database administrator 

is in charge of periodically examining fragment access frequencies, and 

when necessary, moving and reorganizing fragments. An alternative 

solution to data placement is full partitioning, whereby each relation is 

horizontally fragmented across all the nodes in the system. There are three 

basic strategies for data partitioning: round-robin, hash, and range 

partitioning (Figure 2.4.7). 
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Fig: 4.4.7 Different Partitioning Schemes 

 

1. Round-robin partitioning is the simplest strategy, it ensures uniform data 

distribution. With n partitions, the ith tuple in insertion order is assigned to 

partition (i mod n). This strategy enables the sequential access to a relation 

to be done in parallel. However, the direct access to individual tuples, based 

on a predicate, requires accessing the entire relation. 

 

2. Hash partitioning applies a hash function to some attribute that yields the 

partition number. This strategy allows exact-match queries on the selection 

attribute to be processed by exactly one node and all other queries to be 

processed by all the nodes in parallel. 

 

3. Range partitioning distributes tuples based on the value intervals 

(ranges) of some attribute. In addition to supporting exact-match queries (as 

in hashing), it is well-suited for range queries. For instance, a query with a 

predicate “A between A1 and A2” may be processed by the only node(s) 

containing tuples whose A value is in range [A1,A2]. 

 

However, range partitioning can result in high variation in partition 

size. Compared to clustering relations on a single (possibly very large) disk, 

full partitioning yields better performance [Livny et al., 1987]. Although 

full partitioning has obvious performance advantages, highly parallel 

execution might cause a serious performance overhead for complex queries 

involving joins. Furthermore, full partitioning is not appropriate for small 

relations that span a few disk blocks. These drawbacks suggest that a 

compromise between clustering and full partitioning (i.e., variable 

partitioning), needs to be found. A solution is to do data placement by 

variable partitioning [Copeland et al., 1988]. The degree of partitioning, i.e., 

the number of nodes over which a relation is fragmented, is a function of 

the size and access frequency of the relation. This strategy is much more 

involved than either clustering or full partitioning because changes in data 

distribution may result in reorganization. For example, a relation initially 

placed across eight nodes 
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may have its cardinality doubled by subsequent insertions, in which case it 

should be placed across 16 nodes. In a highly parallel system with variable 

partitioning, periodic reorganizations for load balancing are essential and 

should be frequent unless the workload is fairly static and experiences 

only a few updates. Such reorganizations should remain transparent to 

compiled programs that run on the database server. In particular, programs 

should not be recompiled because of reorganization. Therefore, the 

compiled programs should remain independent of data location, which may 

change rapidly. Such independence can be achieved if the run-time system 

supports associative access to distributed data. This is different from a 

distributed DBMS, where associative access is achieved at compile time by 

the query processor using the data directory. 
 

4.4.6 INTRA-QUERY PARALLELISM 
 

 

Parallel query execution can exploit two forms of parallelism: inter- and 

intra-query. Within a query (intra-query parallelism), inter-operator and 

intra-operator parallelism are used to decrease response time. 
 

4.4.7 INTER –QUERY PARALLELISM 
 

 

Inter-query parallelism enables the parallel execution of multiple queries 

generated by concurrent transactions, in order to increase the transactional 

throughput. Inter-operator parallelism is obtained by executing in parallel 

several operators of the query tree on several processors while with intra- 

operator parallelism, the same operator is executed by many processors, 

each one working on a subset of the data. Note that these two forms of 

parallelism also exist in distributed query processing. 
 

4.4.8 INTRA OPERATION PARALLELISM 
 

 

Intra-operator parallelism is based on the decomposition of one 

operator in a set of independent sub-operators, called operator instances. 

This decomposition is done using static and/or dynamic partitioning of 

relations. Each operator instance will then process one relation partition, 

also called a bucket. The operator decomposition frequently benefits from 

the initial partitioning of the data (e.g., the data are partitioned on the join 

attribute). To illustrate intra-operator parallelism, let us consider a simple 

select-join query. The select operator can be directly decomposed into 

several select operators, each on a different partition, and no redistribution 

is required (Figure 2.4.8). Note that if the relation is partitioned on the select 

attribute, partitioning properties can be used to eliminate some select 

instances. For example, in an exact-match select, only one select instance 

will be executed if the relation was partitioned by hashing (or range) on the 

select attribute. It is more complex to decompose the join operator. In order 

to have independent joins, each bucket of the first relation R may be joined 

to the entire relation S. Such a join will be very 
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inefficient (unless S is very small) because it will imply a broadcast of S 

on each participating processor. A more efficient way is to use partitioning 

properties. For example, if R and S are partitioned by hashing on the join 

attribute and if the join is an equijoin, then we can partition the join into 

independent joins. This is the ideal case that cannot be always used, because 

it depends on the initial partitioning of R and S. In the other cases, one or 

two operands may be repartitioned [Valduriez and Gardarin, 1984]. Finally, 

we may notice that the partitioning function (hash, range, round robin) is 

independent of the local algorithm (e.g., nested loop, hash, sort merge) used 

to process the join operator (i.e., on each processor). For instance, a hash 

join using a hash partitioning needs two hash functions. The first one, h1, is 

used to partition the two base relations on the join attribute. The second one, 

h2, which can be different for each processor, is used to process the join on 

each processor. 

 
Fig: 4.4.8 Intra-operator Parallism 

 

 

4.4.9 INTER OPERATION PARALLELISM 
 

 

Two forms of inter-operator parallelism can be exploited. With 

pipeline parallelism, several operators with a producer-consumer link are 

executed in parallel. For instance, the select operator in Figure 2.4.9 will 

be executed in parallel with the join operator. The advantage of such 

execution is that the intermediate result is not materialized, thus saving 

memory and disk accesses. In the example of Figure 2.4.9, only S may fit 

in memory. Independent parallelism is achieved when there is no 

dependency between the operators that are executed in parallel. For 

instance, the two select operators of Figure 2.4.9 can be executed in parallel. 

This form of parallelism is very attractive because there is no interference 

between the processors. 
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Fig:4.5.3 Inter-operator Parallelism 

 

4.4.10 LET US SUM UP 
 

 

Thus, we have studied basic concepts of database transaction, ACID 

properties, concurrency control, timestamp ordering algorithm, deadlock 

management. With this local recovery management, 2PC and 3PC protocol. 

Also the major aspect parallel database system as well. 
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4.4.12 UNIT END EXERCISES 
 

1) Explain with Example: 

a. Intra-query parallelism 

b. Intra-operation parallelism 

c. Inter-operation parallelism 

2) Explain ACID properties. 

3) Explain two and three phase commit protocol. 

4) Explain timestamp ordering algorithm. 

 

 

 

❖❖❖❖ 
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5.2.18 List of References 

5.2.19 Unit End Exercises 
 

5.1.0 OBJECTIVES 
 

 

In this chapter you will learn about: 

⮚ Basic of object, constructor, methods, inheritance etc. 

⮚ Object-oriented database-language and design ODMG model, 
ODL,OQL 

⮚ Temporal Database-Time series, structure, granularity, data model 
etc. 

⮚ Spatial Database-conceptual, logical data model 

⮚ Geographical Information Systems (GIS)s 
 

5.1.1 INTRODUCTION 
 

 

This chapter introduces database concepts for some of the common 

features that are needed by advanced applications and are being used 

widely. We will temporal concepts that are used in temporal database 

applications, and, briefly, some of the issues involving spatial database. 

 

In this chapter, we discuss the features of object oriented data 

models and show how some of these features have been incorporated in 

relational database systems. Object-oriented databases are now referred to 

as object databases (ODB) (previously called OODB), and the database 

systems are referred to as object data management systems (ODMS) 

(formerly referred to as ODBMS or OODBMS). Traditional data models 

and systems, such as relational, network, and hierarchical, have been quite 

successful in developing the database technologies required for many 

traditional business database applications. 

 

We introduce the concepts of temporal databases, which permit the 

database system to store a history of changes, and allow users to query both 

current and past states of the database. Some temporal database models also 

allow users to store future expected information, such as planned schedules. 

It is important to note that many database applications are temporal, but they 

are often implemented without having much temporal support from the 

DBMS package—that is, the temporal concepts are implemented in the 

application programs that access the database. 

 

We discuss types of spatial data, different kinds of spatial analyses, 

operations on spatial data, types of spatial queries, spatial data indexing, 

spatial data mining, and applications of spatial databases. 
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5.1.2 OBJECT ORIENTED DATABASE 
 

The features of object oriented data models and show how some of 

these features have been incorporated in relational database systems. 

Object-oriented databases are now referred to as object databases (ODB) 

(previously called OODB), and the database systems are referred to as 

object data management systems (ODMS) (formerly referred to as 

ODBMS or OODBMS). Traditional data models and systems, such as 

relational, network, and hierarchical, have been quite successful in 

developing the database technologies required for many traditional business 

database applications. However, they have certain shortcomings when more 

complex database applications must be designed and implemented—for 

example, databases for engineering design and manufacturing (CAD/CAM 

and CIM1), scientific experiments, telecommunications, geographic 

information systems, and multimedia. These newer applications have 

requirements and characteristics that differ from those of traditional 

business applications, such as more complex structures for stored objects; 

the need for new data types for storing images, videos, or large textual 

items; longer-duration transactions; and the need to define nonstandard 

application-specific operations. Object databases were proposed to meet 

some of the needs of these more complex applications. A key feature of 

object databases is the power they give the designer to specify both the 

structure of complex objects and the operations that can be applied to these 

objects. Another reason for the creation of object-oriented databases is the 

vast increase in the use of object-oriented programming languages for 

developing software applications. Databases are fundamental components 

in many software systems, and traditional databases are sometimes difficult 

to use with software applications that are developed in an object-oriented 

programming language such as C++ or Java. Object databases are designed 

so they can be directly—or seamlessly—integrated with software that is 

developed using object-oriented programming languages. Relational 

DBMS (RDBMS) vendors have also recognized the need for incorporating 

features that were proposed for object databases, and newer versions of 

relational systems have incorporated many of these features. This has led to 

database systems that are characterized as object-relational or ORDBMSs. 

The latest version of the SQL standard (2008) for RDBMSs includes many 

of these features, which were originally known as SQL/Object and they 

have now been merged into the main SQL specification, known as 

SQL/Foundation. Although many experimental prototypes and commercial 

object-oriented database systems have been created, they have not found 

widespread use because of the popularity of relational and object-relational 

systems. The experimental prototypes included the Orion system developed 

at MCC, Open OODB at Texas Instruments, the Iris system at Hewlett-

Packard laboratories, the Ode system at AT&T Bell Labs, and the 

ENCORE/ObServer project at Brown University. Commercially available 

systems included GemStone Object Server of GemStone Systems, ONTOS 

DB of Ontos, Objectivity/DB of Objectivity Inc.,Versant Object Database 

and Fast Objects by Versant 
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Corporation (and Poet), ObjectStore of Object Design, and Ardent Database 

of Ardent. These represent only a partial list of the experimental prototypes 

and commercial object-oriented database systems that were created. As 

commercial object DBMSs became available, the need for a standard model 

and language was recognized. Because the formal procedure for approval 

of standards normally takes a number of years, a consortium of object 

DBMS vendors and users, called ODMG, proposed a standard whose 

current specification is known as the ODMG 3.0 standard. Object-oriented 

databases have adopted many of the concepts that were developed originally 

for object-oriented programming languages. We describe the key concepts 

utilized in many object database systems and that were later incorporated 

into object-relational systems and the SQL standard. These include object 

identity, object structure and type constructors, encapsulation of operations 

and the definition of methods as part of class declarations, mechanisms for 

storing objects in a database by making them persistent, and type and class 

hierarchies and inheritance. Then, in we see how these concepts have been 

incorporated into the latest SQL standards, leading to object-relational 

databases. Object features were originally introduced in SQL:1999, and 

then updated in the latest version (SQL:2008) of the standard. We turn our 

attention to “pure” object database standards by presenting features of the 

object database standard ODMG 3.0 and the object definition language 

ODL. An overview of the database design process for object databases. The 

object query language (OQL), which is part of the ODMG 3.0 standard. We 

discuss programming language bindings, which specify how to extend 

object oriented programming languages to include the features of the object 

database standard. 
 

5.1.3 OBJECT IDENTITY 
 

 

One goal of an ODMS (Object Data Management System) is to 

maintain a direct correspondence between real-world and database objects 

so that objects do not lose their integrity and identity and can easily be 

identified and operated upon. Hence, an ODMS provides a unique identity 

to each independent object stored in the database. This unique identity is 

typically implemented via a unique, system-generated object identifier 

(OID). The value of an OID is not visible to the external user, but is used 

internally by the system to identify each object uniquely and to create and 

manage inter-object references. The OID can be assigned to program 

variables of the appropriate type when needed. 

 

The main property required of an OID is that it be immutable; that 

is, the OID value of a particular object should not change. This preserves 

the identity of the real-world object being represented. Hence, an ODMS 

must have some mechanism for generating OIDs and preserving the 

immutability property. It is also desirable that each OID be used only once; 

that is, even if an object is removed from the database, its OID should not 

be assigned to another object. These two properties imply that the OID 

should not depend on any attribute values of the object, since the 
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value of an attribute may be changed or corrected. We can compare this 

with the relational model, where each relation must have a primary key 

attribute whose value identifies each tuple uniquely. In the relational model, 

if the value of the primary key is changed, the tuple will have a new identity, 

even though it may still represent the same real-world object. Alternatively, 

a real-world object may have different names for key attributes in different 

relations, making it difficult to ascertain that the keys represent the same 

real-world object (for example, the object identifier may be represented as 

Emp_id in one relation and as Ssn in another). It is inappropriate to base the 

OID on the physical address of the object in storage, since the physical 

address can change after a physical reorganization of the database. 

 

However, some early ODMSs have used the physical address as the 

OID to increase the efficiency of object retrieval. If the physical address of 

the object changes, an indirect pointer can be placed at the former address, 

which gives the new physical location of the object. It is more common to 

use long integers as OIDs and then to use some form of hash table to map 

the OID value to the current physical address of the object in storage. Some 

early OO data models required that everything— from a simple value to a 

complex object—was represented as an object; hence, every basic value, 

such as an integer, string, or Boolean value, has an OID. This allows two 

identical basic values to have different OIDs, which can be useful in some 

cases. For example, the integer value 50 can sometimes be used to mean a 

weight in kilograms and at other times to mean the age of a person. Then, 

two basic objects with distinct OIDs could be created, but both objects 

would represent the integer value 50. Although useful as a theoretical 

model, this is not very practical, since it leads to the generation of too many 

OIDs. Hence, most OO database systems allow for the representation of 

both objects and literals (or values). Every object must have an immutable 

OID, whereas a literal value has no OID and its value just stands for itself. 

Thus, a literal value is typically stored within an object and cannot be 

referenced from other objects. In many systems, complex structured literal 

values can also be created without having a corresponding OID if needed. 
 

5.1.4 OBJECT STRUCTURE 
 

 

The term object-oriented—abbreviated OO or O-O—has its origins 

in OO programming languages, or OOPLs. Today OO concepts are applied 

in the areas of databases, software engineering, knowledge bases, artificial 

intelligence, and computer systems in general. OOPLs have their roots in 

the SIMULA language, which was proposed in the late 1960s. The 

programming language Smalltalk, developed at Xerox PARC8 in the 1970s, 

was one of the first languages to explicitly incorporate additional OO 

concepts, such as message passing and inheritance. It is known as a pure 

OO programming language, meaning that it was explicitly designed to be 

object-oriented. This contrasts with hybrid OO programming languages, 

which incorporate OO concepts into an already existing 
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language. An example of the latter is C++, which incorporates OO 

concepts into the popular C programming language. 

 

An object typically has two components: state (value) and behavior 

(operations). It can have a complex data structure as well as specific 

operations defined by the programmer. Objects in an OOPL exist only 

during program execution; therefore, they are called transient objects. An 

OO database can extend the existence of objects so that they are stored 

permanently in a database, and hence the objects become persistent objects 

that exist beyond program termination and can be retrieved later and shared 

by other programs. In other words, OO databases store persistent objects 

permanently in secondary storage, and allow the sharing of these objects 

among multiple programs and applications. This requires the incorporation 

of other well-known features of database management systems, such as 

indexing mechanisms to efficiently locate the objects, concurrency control 

to allow object sharing among concurrent programs, and recovery from 

failures. An OO database system will typically interface with one or more 

OO programming languages to provide persistent and shared object 

capabilities. 

 

The internal structure of an object in OOPLs includes the 

specification of instance variables, which hold the values that define the 

internal state of the object. An instance variable is similar to the concept of 

an attribute in the relational model, except that instance variables may be 

encapsulated within the object and thus are not necessarily visible to 

external users. Instance variables may also be of arbitrarily complex data 

types. Object-oriented systems allow definition of the operations or 

functions (behavior) that can be applied to objects of a particular type. In 

fact, some OO models insist that all operations a user can apply to an object 

must be predefined. 

 

This forces a complete encapsulation of objects. This rigid approach 

has been relaxed in most OO data models for two reasons. First, database 

users often need to know the attribute names so they can specify selection 

conditions on the attributes to retrieve specific objects. Second, complete 

encapsulation implies that any simple retrieval requires a predefined 

operation, thus making ad hoc queries difficult to specify on the fly. 

 

To encourage encapsulation, an operation is defined in two parts. 

The first part, called the signature or interface of the operation, specifies 

the operation name and arguments (or parameters). The second part, called 

the method or body, specifies the implementation of the operation, usually 

written in some general-purpose programming language. Operations can 

be invoked by passing a message to an object, which includes the operation 

name and the parameters. The object then executes the method for that 

operation. This encapsulation permits modification of the internal structure 

of an object, as well as the implementation of its operations, 
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without the need to disturb the external programs that invoke these 

operations. 

 

Hence, encapsulation provides a form of data and operation 

independence. Another key concept in OO systems is that of type and 

class hierarchies and inheritance. This permits specification of new types 

or classes that inherit much of their structure and/or operations from 

previously defined types or classes. This makes it easier to develop the 

data types of a system incrementally, and to reuse existing type definitions 

when creating new types of objects. One problem in early OO database 

systems involved representing relationships among objects. The insistence 

on complete encapsulation in early OO data models led to the argument that 

relationships should not be explicitly represented, but should instead be 

described by defining appropriate methods that locate related objects. 

However, this approach does not work very well for complex databases with 

many relationships because it is useful to identify these relationships and 

make them visible to users. The ODMG object database standard has 

recognized this need and it explicitly represents binary relationships via a 

pair of inverse references. 

 

Another OO concept is operator overloading, which refers to an 

operation’s ability to be applied to different types of objects; in such a 

situation, an operation name may refer to several distinct implementations, 

depending on the type of object it is applied to. This feature is also called 

operator polymorphism. For example, an operation to calculate the area of 

a geometric object may differ in its method (implementation), depending on 

whether the object is of type triangle, circle, or rectangle. This may require 

the use of late binding of the operation name to the appropriate method at 

runtime, when the type of object to which the operation is applied becomes 

known. In the next several sections, we discuss in some detail the main 

characteristics of object databases. The types for complex- structured 

objects are specified via type constructors; encapsulation and persistence; 

and presents inheritance concepts. Some additional OO concepts, and gives 

a summary of all the OO concepts that we introduced. In we show how some 

of these concepts have been incorporated into the SQL:2008 standard for 

relational databases. Then we show how these concepts are realized in the 

ODMG 3.0 object database standard. 
 

5.1.5 TYPE CONSTRUCTORS 
 

 

Another feature of an ODMS (and ODBs in general) is that objects 

and literals may have a type structure of arbitrary complexity in order to 

contain all of the necessary information that describes the object or literal. 

In contrast, in traditional database systems, information about a complex 

object is often scattered over many relations or records, leading to loss of 

direct correspondence between a real-world object and its database 

representation. In ODBs, a complex type may be constructed from other 

types by nesting of type constructors. The three most basic constructors 

are atom, struct (or tuple), and collection. 
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One type constructor has been called the atom constructor, although 

this term is not used in the latest object standard. This includes the basic 

built-in data types of the object model, which are similar to the basic types 

in many programming languages: integers, strings, floating point numbers, 

enumerated types, Booleans, and so on. They are called single-valued or 

atomic types, since each value of the type is considered an atomic 

(indivisible) single value. 

 

A second type constructor is referred to as the struct (or tuple) 

constructor. This can create standard structured types, such as the tuples 

(record types) in the basic relational model. A structured type is made up of 

several components, and is also sometimes referred to as a compound or 

composite type. More accurately, the struct constructor is not considered to 

be a type, but rather a type generator, because many different structured 

types can be created. For example, two different structured types that can 

be created are: struct Name<FirstName: string, MiddleInitial: char, 

LastName: string>, and struct CollegeDegree<Major: string, Degree: string, 

Year: date>. To create complex nested type structures in the object model, 

the collection type constructors are needed, which we discuss next. Notice 

that the type constructors atom and struct are the only ones available in the 

original (basic) relational model. 

 

Collection (or multivalued) type constructors include the set(T), 

list(T), bag(T), array(T), and dictionary(K,T) type constructors. These 

allow part of an object or literal value to include a collection of other objects 

or values when needed. These constructors are also considered to be type 

generators because many different types can be created. For example, 

set(string), set(integer), and set(Employee) are three different types that can 

be created from the set type constructor. All the elements in a particular 

collection value must be of the same type. For example, all values in a 

collection of type set(string) must be string values. The atom constructor is 

used to represent all basic atomic values, such as integers, real numbers, 

character strings, Booleans, and any other basic data types that the system 

supports directly. The tuple constructor can create structured values and 

objects of the form <a1:i1, a2:i2, ..., an:in>, where each aj is an attribute 

name10 and each ij is a value or an OID. The other commonly used 

constructors are collectively referred to as collection types, but have 

individual differences among them. The set constructor will create objects 

or literals that are a set of distinct elements {i1, i2, ..., in}, all of the same 

type. The bag constructor (sometimes called a multiset) is similar to a set 

except that the elements in a bag need not be distinct. The list constructor 

will create an ordered list [i1, i2, ..., in] of OIDs or values of the same type. 

A list is similar to a bag except that the elements in a list are ordered, and 

hence we can refer to the first, second, or jth element. The array 

constructor creates a single-dimensional array of elements of the same 

type. The main difference between array and list is that a list can have an 

arbitrary number of elements whereas an array typically has a maximum 

size. 



96  

Finally, the dictionary constructor creates a collection of two 

tuples (K, V), where the value of a key K can be used to retrieve the 

corresponding value V. The main characteristic of a collection type is that 

its objects or values will be a collection of objects or values of the same type 

that may be unordered (such as a set or a bag) or ordered (such as a list or 

an array). The tuple type constructor is often called a structured type, since 

it corresponds to the struct construct in the C and C++ programming 

languages. 

 

An object definition language (ODL) that incorporates the 

preceding type constructors can be used to define the object types for a 

particular database application. In this we will describe the standard ODL 

of ODMG, but first we introduce the concepts gradually in this section using 

a simpler notation. The type constructors can be used to define the data 

structures for an OO database schema. Figure shows how we may declare 

EMPLOYEE and DEPARTMENT types. 

 

In Figure, the attributes that refer to other objects—such as Dept of 

EMPLOYEE or Projects of DEPARTMENT—are basically OIDs that serve 

as references to other objects to represent relationships among the objects. 

For example, the attribute Dept of EMPLOYEE is of type DEPARTMENT, 

and hence is used to refer to a specific DEPARTMENT object (the 

DEPARTMENT object where the employee works). The value of such an 

attribute would be an OID for a specific DEPARTMENT object. A 

binary relationship can be represented in one direction, or it can have an 

inverse reference. The latter representation makes it easy to traverse the 

relationship in both directions. For example, in Figure the attribute 

Employees of DEPARTMENT has as its value a set of references (that is, a 

set of OIDs) to objects of type EMPLOYEE; these are the employees who 

work for the DEPARTMENT. The inverse is the reference attribute Dept of 

EMPLOYEE. 
 

Figure5.1.1 Specifying the object type EMPLOYEE, DATE and 

DEPARTMENT using type constructors. 
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5.1.6 ENCAPSULATION OF OPERATIONS 
 

Encapsulation of Operations The concept of encapsulation is one 

of the main characteristics of OO languages and systems. It is also related 

to the concepts of abstract data types and information hiding in 

programming languages. In traditional database models and systems this 

concept was not applied, since it is customary to make the structure of 

database objects visible to users and external programs. In these traditional 

models, a number of generic database operations are applicable to objects 

of all types. For example, in the relational model, the operations for 

selecting, inserting, deleting, and modifying tuples are generic and may be 

applied to any relation in the database. The relation and its attributes are 

visible to users and to external programs that access the relation by using 

these operations. The concepts of encapsulation is applied to database 

objects in ODBs by defining the behavior of a type of object based on the 

operations that can be externally applied to objects of that type. Some 

operations may be used to create (insert) or destroy (delete) objects; other 

operations may update the object state; and others may be used to retrieve 

parts of the object state or to apply some calculations. Still other operations 

may perform a combination of retrieval, calculation, and update. In general, 

the implementation of an operation can be specified in a general-purpose 

programming language that provides flexibility and power in defining the 

operations. The external users of the object are only made aware of the 

interface of the operations, which defines the name and arguments 

(parameters) of each operation. The implementation is hidden from the 

external users; it includes the definition of any hidden internal data 

structures of the object and the implementation of the operations that access 

these structures. The interface part of an operation is sometimes called the 

signature, and the operation implementation is sometimes called the 

method. 

 

For database applications, the requirement that all objects be 

completely encapsulated is too stringent. One way to relax this requirement 

is to divide the structure of an object into visible and hidden attributes 

(instance variables). Visible attributes can be seen by and are directly 

accessible to the database users and programmers via the query language. 

The hidden attributes of an object are completely encapsulated and can be 

accessed only through predefined operations. Most ODMSs employ high-

level query languages for accessing visible attributes. In this we will 

describe the OQL query language that is proposed as a standard query 

language for ODBs. 

 

The term class is often used to refer to a type definition, along with 

the definitions of the operations for that type. Figure 3.1.2 shows how the 

type definitions in Figure 3.1.1 can be extended with operations to define 

classes. A number of operations are declared for each class, and the 

signature (interface) of each operation is included in the class definition. 
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Figure 5.1.2 Adding operations to the definitions of EMPLOYEE and 

DEPARTMENT 

 

A method (implementation) for each operation must be defined 

elsewhere using a programming language. Typical operations include the 

object constructor operation (often called new), which is used to create a 

new object, and the destructor operation, which is used to destroy (delete) 

an object. A number of object modifier operations can also be declared to 

modify the states (values) of various attributes of an object. Additional 

operations can retrieve information about the object. 

 

An operation is typically applied to an object by using the dot 

notation. For example, if d is a reference to a DEPARTMENT object, we 

can invoke an operation such as no_of_emps by writing d.no_of_emps. 

Similarly, by writing d.destroy_dept, the object referenced by d is destroyed 

(deleted). The only exception is the constructor operation, which returns a 

reference to a new DEPARTMENT object. Hence, it is customary in some 

OO models to have a default name for the constructor operation that is the 

name of the class itself, although this was not used in Figure. The dot 

notation is also used to refer to attributes of an object—for example, by 

writing d.Dnumber or d.Mgr_Start_date. 
 

5.1.7 METHODS AND PERSISTENCE 
 

 

Specifying Object Persistence via Naming and Reachability An 

ODBS is often closely coupled with an object-oriented programming 

language (OOPL). The OOPL is used to specify the method (operation) 
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implementations as well as other application code. Not all objects are 

meant to be stored permanently in the database. 

 

Transient objects exist in the executing program and disappear 

once the program terminates. Persistent objects are stored in the database 

and persist after program termination. The typical mechanisms for making 

an object persistent are naming and reachability. 

 

The naming mechanism involves giving an object a unique 

persistent name within a particular database. This persistent object name 

can be given via a specific statement or operation in the program, as 

shown in Figure. The named persistent objects are used as entry points to 

the database through which users and applications can start their database 

access. Obviously, it is not practical to give names to all objects in a large 

database that includes thousands of objects, so most objects are made 

persistent by using the second mechanism, called reachability. The 

reachability mechanism works by making the object reachable from some 

other persistent object. An object B is said to be reachable from an object 

A if a sequence of references in the database lead from object A to object 

B. 

 

If we first create a named persistent object N, whose state is a set (or 

possibly a bag) of objects of some class C, we can make objects of C 

persistent by adding them to the set, thus making them reachable from N. 

Hence, N is a named object that defines a persistent collection of objects 

of class C. In the object model standard, N is called the extent of C. 

 

For example, we can define a class DEPARTMENT_SET (see 

Figure) whose objects are of type set(DEPARTMENT). We can create an 

object of type DEPARTMENT_SET, and give it a persistent name 

ALL_DEPARTMENTS, as shown in Figure. Any DEPARTMENT object 

that is added to the set of ALL_DEPARTMENTS by using the add_dept 

operation becomes persistent by virtue of its being reachable from 

ALL_DEPARTMENTS. As we will see in Section, the ODMG ODL 

standard gives the schema designer the option of naming an extent as part 

of class definition. Notice the difference between traditional database 

models and ODBs in this respect. 
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Figure 5.1.3 creating persistent objects by naming and reachability. 

 

In traditional database models, such as the relational model, all 

objects are assumed to be persistent. Hence, when a table such as 

EMPLOYEE is created in a relational database, it represents both the type 

declaration for EMPLOYEE and a persistent set of all EMPLOYEE 

records (tuples). In the OO approach, a class declaration of EMPLOYEE 

specifies only the type and operations for a class of objects. The user must 

separately define a persistent object of type set(EMPLOYEE) or 

bag(EMPLOYEE) whose value is the collection of references (OIDs) to all 

persistent EMPLOYEE objects, if this is desired, as shown in Figure. This 

allows transient and persistent objects to follow the same type and class 

declarations of the ODL and the OOPL. In general, it is possible to define 

several persistent collections for the same class definition, if desired. 
 

5.1.8 TYPE AND CLASS HIERARCHIES 
 

 

Simplified Model for Inheritance Another main characteristic of 

ODBs is that they allow type hierarchies and inheritance. We use a simple 

OO model in this section a model in which attributes and operations are 

treated uniformly—since both attributes and operations can be inherited. 

In this section, we will discuss the inheritance model of the ODMG 

standard, which differs from the model discussed here because it 

distinguishes between two types of inheritance. Inheritance allows the 

definition of new types based on other predefined types, leading to a type 

(or class) hierarchy. 

 

Type is defined by assigning it a type name, and then defining a 

number of attributes (instance variables) and operations (methods) for the 

type. In the simplified model we use in this section, the attributes and 

operations are together called functions, since attributes resemble functions 

with zero arguments. A function name can be used to refer to the value of an 

attribute or to refer to the resulting value of an operation (method).We use 

the term function to refer to both attributes and 
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operations, since they are treated similarly in a basic introduction to 

inheritance. 

 

A type in its simplest form has a type name and a list of visible 

(public) functions. When specifying a type in this section, we use the 

following format, which does not specify arguments of functions, to 

simplify the discussion: TYPE_NAME: function, function,..., function For 

example, a type that describes characteristics of a PERSON may be defined 

as follows: PERSON: Name, Address, Birth_date, Age, Ssn In the PERSON 

type, the Name, Address, Ssn, and Birth_date functions can be implemented 

as stored attributes, whereas the Age function can be implemented as an 

operation that calculates the Age from the value of the Birth_date attribute 

and the current date. 

 

The concept of subtype is useful when the designer or user must 

create a new type that is similar but not identical to an already defined type. 

The subtype then inherits all the functions of the predefined type, which is 

referred to as the supertype. For example, suppose that we want to define 

two new types EMPLOYEE and STUDENT as follows: 

 

EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, 

Hire_date, Seniority STUDENT: Name, Address, Birth_date, Age, Ssn, 

Major, Gpa Since both STUDENT and EMPLOYEE include all the 

functions defined for PERSON plus some additional functions of their own, 

we can declare them to be subtypes of PERSON. Each will inherit the 

previously defined functions of PERSON—namely, Name, Address, 

Birth_date, Age, and Ssn. For STUDENT, it is only necessary to define 

the new (local) functions Major and Gpa, which are not inherited. 

Presumably, Major can be defined as a stored attribute, whereas Gpa may 

be implemented as an operation that calculates the student’s grade point 

average by accessing the Grade values that are internally stored (hidden) 

within each STUDENT object as hidden attributes. 

For EMPLOYEE, the Salary and Hire_date functions may be stored 

attributes, whereas 

Seniority may be an operation that calculates Seniority from the value of 

Hire_date. 

 
 

In general, a subtype includes all of the functions that are defined 

for its super type plus some additional functions that are specific only to the 

sub type. Hence, it is possible to generate a type hierarchy to show the 

supertype/subtype relationships among all the types declared in the system. 

 

As another example, consider a type that describes objects in plane 

geometry, which may be defined as follows: GEOMETRY_OBJECT: 
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Shape, Area, Reference_point For the GEOMETRY_OBJECT type, Shape 

is implemented as an attribute (its domain can be an enumerated type with 

values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and Area is a method 

that is applied to calculate the area. Reference_point specifies the 

coordinates of a point that determines the object location. Now suppose that 

we want to define a number of subtypes for the GEOMETRY_OBJECT 

type, as follows: 

 

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height 

TRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle 

CIRCLE subtype-of GEOMETRY_OBJECT: Radius 

 

Notice that the Area operation may be implemented by a different 

method for each subtype, since the procedure for area calculation is 

different for rectangles, triangles, and circles. Similarly, the attribute 

Reference_point may have a different meaning for each subtype; it might 

be the center point for RECTANGLE and CIRCLE objects, and the vertex 

point between the two given sides for a TRIANGLE object. Notice that type 

definitions describe objects but do not generate objects on their own. When 

an object is created, typically it belongs to one or more of these types that 

have been declared. For example, a circle object is of type CIRCLE and 

GEOMETRY_OBJECT (by inheritance). Each object also becomes a 

member of one or more persistent collections of objects (or extents), which 

are used to group together collections of objects that are persistently stored 

in the database. Constraints on Extents Corresponding to a Type 

Hierarchy in most ODBs, an extent is defined to store the collection of 

persistent objects for each type or subtype. 

 

In this case, the constraint is that every object in an extent that 

corresponds to a subtype must also be a member of the extent that 

corresponds to its supertype. Some OO database systems have a predefined 

system type (called the ROOT class or the OBJECT class) whose extent 

contains all the objects in the system. Classification then proceeds by 

assigning objects into additional subtypes that are meaningful to the 

application, creating a type hierarchy (or class hierarchy) for the system. 

All extents for system- and user-defined classes are subsets of the extent 

corresponding to the class OBJECT, directly or indirectly. In the ODMG 

model, the user may or may not specify an extent for each class (type), 

depending on the application. 

 

An extent is a named persistent object whose value is a persistent 

collection that holds a collection of objects of the same type that are stored 

permanently in the database. The objects can be accessed and shared by 

multiple programs. It is also possible to create a transient collection, which 

exists temporarily during the execution of a program but is not kept when 

the program terminates. For example, a transient collection may be created 

in a program to hold the result of a query that selects some objects from a 

persistent collection and copies those objects into the transient collection. 

The program can then manipulate the objects 
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in the transient collection, and once the program terminates, the transient 

collection ceases to exist. 

 

In general, numerous collections—transient or persistent—may 

contain objects of the same type. The inheritance model discussed in this 

section is very simple. As we will see in the ODMG model distinguishes 

between type inheritance—called interface inheritance and denoted by a 

colon (:)—and the extent inheritance constraint— denoted by the keyword 

EXTEND. 
 

5.1.9 INHERITANCE 
 

 

SQL has rules for dealing with type inheritance (specified via the 

UNDER keyword). In general, both attributes and instance methods 

(operations) are inherited. The phrase NOT FINAL must be included in a 

UDT if subtypes are allowed to be created under that UDT (see Figure 

11.4(a) and (b), where PERSON_TYPE, STUDENT_TYPE, and 

EMPLOYEE_TYPE are declared to be NOT FINAL). Associated with type 

inheritance are the rules for overloading of function implementations and 

for resolution of function names. These inheritance rules can be 

summarized as follows: 

■ All attributes are inherited. 

■  The order of supertypes in the UNDER clause determines the inheritance 

hierarchy. 

■ An instance of a subtype can be used in every context in which a 

supertype instance is used. 

■ A subtype can redefine any function that is defined in its supertype, with 

the restriction that the signature be the same. 

■ When a function is called, the best match is selected based on the types 

of all arguments. 

■ For dynamic linking, the runtime types of parameters is considered. 

 

Consider the following examples to illustrate type inheritance, 

which are illustrated in Figure. Suppose that we want to create two subtypes 

of PERSON_TYPE: EMPLOYEE_TYPE and STUDENT_TYPE. In 

addition, we also create a subtype MANAGER_TYPE that inherits all the 

attributes (and methods) of EMPLOYEE_TYPE but has an additional 

attribute DEPT_MANAGED. These subtypes are shown in Figure. 

 

In general, we specify the local attributes and any additional specific 

methods for the subtype, which inherits the attributes and operations of its 

supertype. Another facility in SQL is table inheritance via the 

supertable/subtable facility. This is also specified using the keyword 

UNDER. Here, a new record that is inserted into a subtable, say 
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the MANAGER table, is also inserted into its supertables EMPLOYEE 

and PERSON. Notice that when a record is inserted in MANAGER, we 

must provide values for all its inherited attributes. INSERT, DELETE, and 

UPDATE operations are appropriately propagated. 

 

In the ODMG object model, two types of inheritance relationships 

exist: behavior only inheritance and state plus behavior inheritance. 

Behavior inheritance is also known as ISA or interface inheritance, and 

is specified by the colon (:) notation.30 Hence, in the ODMG object model, 

behavior inheritance requires the supertype to be an interface, whereas the 

subtype could be either a class or another interface. 

 

The other inheritance relationship, called EXTENDS inheritance, 

is specified by the keyword extends. It is used to inherit both state and 

behavior strictly among classes, so both the supertype and the subtype must 

be classes. Multiple inheritance via extends is not permitted. However, 

multiple inheritance is allowed for behavior inheritance via the colon (:) 

notation. Hence, an interface may inherit behavior from several other 

interfaces. A class may also inherit behavior from several interfaces via 

colon (:) notation, in addition to inheriting behavior and state from at most 

one other class via extends. 
 

5.1.10 COMPLEX OBJECTS 
 

 

Unstructured complex object: 

 
• These is provided by a DBMS and permits the storage and retrieval of 

large objects that are needed by the database application. 

• Typical examples of such objects are bitmap images and long text 

strings (such as documents); they are also known as binary large objects, 

or BLOBs for short. 

• This has been the standard way by which Relational DBMSs have dealt 

with supporting complex objects, leaving the operations on those 
objects outside the RDBMS. 

 

Structured complex object: 

 

This differs from an unstructured complex object in that the object’s 

structure is defined by repeated application of the type constructors 

provided by the OODBMS. Hence, the object structure is defined and 

known to the OODBMS. The OODBMS also defines methods or operations 

on it. 
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5.1.11 OBJECT-ORIENTED DBMS 
 

Object oriented databases or object databases incorporate the object 

data model to define data structures on which database operations such as 

CRUD can be performed. They store objects rather than data such as 

integers and strings. The relationship between various data is implicit to the 

object and manifests as object attributes and methods. Object database 

management systems extend the object programming language with 

transparently persistent data, concurrency control, data recovery, 

associative queries, and other database capabilities. The Object-Oriented 

Database System Manifesto by Malcolm Atkinson mandates that an object 

oriented database system should satisfy two criteria: it should be a DBMS, 

and it should be an object-oriented system Thus OODB implements OO 

concepts such as object identity ,polymorphism, encapsulation and 

inheritance to provide access to persistent objects using any OO- 

programming language The tight integration between object orientation and 

databases provides programmers a unified environment when dealing with 

complex data such as 2D and 3D graphics. Object oriented databases are 

designed to work well with object oriented programming languages such as 

Python, Java, and Objective-C. 
 

5.1.12 LANGUAGES AND DESIGN 
 

 

Developed by ODMG, Object Query Language allows SQL-like 

queries to be performed on a OODB. Like SQL, it is a declarative language. 

Based loosely on SQL, OQL includes additional language constructs which 

allow for object oriented design such as operation invocation and 

inheritance.   Query Structures look very similar in SQL and OQL but the 

results returned are different. Example: OQL query to obtain Voter names 

who are from the state of Colorado 

 

Select distinct v.name 

From voters v 

Where v.state = “Colorado” 

. 

• More example of OQL with integration to OO Language: 

• Create objects as in OO languages and then make them persistent 

using the set() method on the database. 

Person p1 = new Person(“Pikes Peak", 78); 
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db.set(p1); 

• Retrieve by age (null default for string) 

Person p = new Person (null, 35); 

ObjectSet<Person> result = db.get(p); 
 

 

5.1.13 ODMG MODEL 
 

 

The ODMG object model is the data model upon which the object 

definition language (ODL) and object query language (OQL) are based. It 

is meant to provide a standard data model for object databases, just as SQL 

describes a standard data model for relational databases. It also provides a 

standard terminology in a field where the same terms were sometimes used 

to describe different concepts. Many of the concepts in the ODMG model 

have already been discussed in Section, and we assume the reader has read 

this section. We will point out whenever the ODMG terminology differs 

from that used in Section. Objects and Literals. Objects and literals are the 

basic building blocks of the object model. The main difference between the 

two is that an object has both an object identifier and a state (or current 

value), whereas a literal has a value (state) but no object identifier. In 

either case, the value can have a complex structure. The object state can 

change over time by modifying the object value. A literal is basically a 

constant value, possibly having a complex structure, but it does not change. 

An object has five aspects: identifier, name, lifetime, structure, and 

creation. 

 

1. The   object   identifier is a   unique   system-wide   identifier   (or 

Object_id). Every object must have an object identifier. 

 

2. Some objects may optionally be given a unique name within a particular 

ODMS—this name can be used to locate the object, and the system 

should return the object given that name. Obviously, not all individual 

objects will have unique names. Typically, a few objects, mainly those 

that hold collections of objects of a particular object type—such as 

extents—will have a name. These names are used as entry points to the 

database; that is, by locating these objects by their unique name, the user 

can then locate other objects that are referenced from these objects. 

Other important objects in the application may also 
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have unique names, and it is possible to give more than one name to 

an object. All names within a particular ODMS must be unique. 

 

3. The lifetime of an object specifies whether it is a persistent object (that 

is, a database object) or transient object (that is, an object in an 

executing program that disappears after the program terminates). 

Lifetimes are independent of types—that is, some objects of a particular 

type may be transient whereas others may be persistent. 

 

4. The structure of an object specifies how the object is constructed by 

using the type constructors. The structure specifies whether an object 

is atomic or not. An atomic object refers to a single object that follows 

a user-defined type, such as Employee or Department. If an object is not 

atomic, then it will be composed of other objects. For example, a 

collection object is not an atomic object, since its state will be a 

collection of other objects. The term atomic object is different from how 

we defined the atom constructor in Section, which referred to all values 

of built-in data types. In the ODMG model, an atomic object is any 

individual user-defined object. All values of the basic built-in data types 

are considered to be literals. 

 

5. Object creation refers to the manner in which an object can be created. 

This is typically accomplished via an operation new for a special 

Object_Factory interface. We shall describe this in more detail later in 

this section. 

 

In the object model, a literal is a value that does not have an object 

identifier. However, the value may have a simple or complex structure. 

There are three types of literals: atomic, structured, and collection. 

 

Atomic literals correspond to the values of basic data types and are 

predefined. The basic data types of the object model include long, short, and 

unsigned integer numbers (these are specified by the keywords long, short, 

unsigned long, and unsigned short in ODL), regular and double precision 

floating point numbers (float, double), Boolean values (boolean), single 

characters (char), character strings (string), and enumeration types 

(enum), among others. 

 

Structured literals correspond roughly to values that are 

constructed using the tuple constructor described in Section. The built-in 

structured literals include Date, Interval, Time, and Timestamp. Additional 

user-defined structured literals can be defined as needed by each 

application. User-defined structures are created using the STRUCT 

keyword in ODL, as in the C and C++ programming languages. 
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Figure 5.1.4 Overview of the interface definitions for part of the ODMG 

object mode. 

a) The basic object interface inherited by all objects b) Some standard 

interfaces for structured literals 
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Figure 5.1.4 Overview of the interface definitions for part of the ODMG 

object mode. 

a) The basic object interface inherited by all objects b) Some standard 

interfaces for structured literals 

c) Interfaces for collections and iterators 
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Collection literals specify a literal value that is a collection of objects or 

values but the collection itself does not have an Object_id. The collections 

in the object model can be defined by the type generators set<T>, bag<T>, 

list<T>, and array<T>, where T is the type of objects or values in the 

collection. 

 

Another collection type is dictionary<K, V>, which is a collection of 

associations <K, V>, where each K is a key (a unique search value) 

associated with a value V; this can be used to create an index on a collection 

of values V. 

 

Figure gives a simplified view of the basic types and type generators of 

the object model. The notation of ODMG uses three concepts: interface, 

literal, and class. Following the ODMG terminology, we use the word 

behavior to refer to operations and state to refer to properties (attributes 

and relationships). An interface specifies only behavior of an object type 

and is typically noninstantiable (that is, no objects are created 
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corresponding to an interface). Although an interface may have state 

properties (attributes and relationships) as part of its specifications, these 

cannot be inherited from the interface. Hence, an interface serves to define 

operations that can be inherited by other interfaces, as well as by classes 

that define the user-defined objects for a particular application. A class 

specifies both state (attributes) and behavior (operations) of an object type, 

and is instantiable. Hence, database and application objects are typically 

created based on the user-specified class declarations that form a database 

schema. Finally, a literal declaration specifies state but no behavior. Thus, 

a literal instance holds a simple or complex structured value but has neither 

an object identifier nor encapsulated operations. Figure is a simplified 

version of the object model. For the full specifications, see Cattell etc all. 

(2000).We will describe some of the constructs shown in Figure as we 

describe the object model. In the object model, all objects inherit the basic 

interface operations of Object, shown in Figure (a); these include operations 

such as copy (creates a new copy of the object), delete (deletes the object), 

and same_as (compares the object’s identity to another object). In general, 

operations are applied to objects using the dot notation. For example, given 

an object O, to compare it with another object P, we write O.same_as(P) 

The result returned by this operation is Boolean and would be true if the 

identity of P is the same as that of O, and false otherwise. Similarly, to create 

a copy P of object O, we write = O.copy() An alternative to the dot 

notation is the arrow notation: O– 

>same_as(P) or O–>copy(). 
 

5.1.14 OBJECT DEFINITION LANGUAGES (ODL) 
 

 

After our overview of the ODMG object model in the previous 

section, we now show how these concepts can be utilized to create an object 

database schema using the object definition language ODL. 

 

The ODL is designed to support the semantic constructs of the 

ODMG object model and is independent of any particular programming 

language. Its main use is to create object specifications—that is, classes and 

interfaces. Hence, ODL is not a full programming language. A user can 

specify a database schema in ODL independently of any programming 

language, and then use the specific language bindings to specify how ODL 

constructs can be mapped to constructs in specific programming languages, 

such as C++, Smalltalk, and Java. We will give an overview of the C++ 

binding in Section. Figure (b) shows a possible object schema for part of 

the UNIVERSITY database. We will describe the concepts of ODL using 

this example, and the one in Figure. The graphical notation for Figure (b) is 

shown in Figure (a) and can be considered as a variation of EER diagrams 

with the added concept of interface inheritance but without several EER 

concepts, such as categories (union types) and attributes of relationships. 

Figure shows one possible set of ODL class definitions for the 

UNIVERSITY database. In general, there may be several possible 

mappings from an object schema diagram (or EER schema diagram) into 

ODL classes. We will discuss these options further in Section. Figure 
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shows the straightforward way of mapping part of the UNIVERSITY 

database from Chapter. Entity types are mapped into ODL classes, and 

inheritance is done using extends. However, there is no direct way to map 

categories (union types) or to do multiple inheritance. In Figure the classes 

PERSON, FACULTY, STUDENT, and GRAD_STUDENT have the 

extents PERSONS, FACULTY, STUDENTS, and GRAD_STUDENTS, 

respectively. Both FACULTY and STUDENT extends PERSON and 

GRAD_STUDENT extends STUDENT. Hence, the collection of 

STUDENTS (and the collection of FACULTY) will be constrained to be a 

subset of the collection of PERSONs at any time. Similarly, the collection 

of GRAD_STUDENTs will be a subset of STUDENTs. At the same time, 

individual STUDENT and FACULTY objects will inherit the properties 

(attributes and relationships) and operations of PERSON, and individual 

GRAD_STUDENT objects will inherit those of STUDENT. 

 

The classes DEPARTMENT, COURSE, SECTION, and 

CURR_SECTION in Figure are straightforward mappings of the 

corresponding entity types in Figure 

 
 

Figure 3.1.5 An example of a database schema a) Graphical notation for 

representing ODL schemas. b) A graphical object database schema for part 

of the UNIVERSITY database (GRADE and DEGREE classes are not 

shown 3.1.3(b) 
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Figure 3.1.6 Possible ODL schema for the UNIVERSITY database in 

figure 3.1.3(b) 
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Figure 3.1.7 An illustration of interface inheritance via “:”. (a) Graphical 

schema representation 

(b) Corresponding interface and class definitions in ODL. 

 

However, the class GRADE requires some explanation. The 

GRADE class corresponds to the M:N relationship between STUDENT and 

SECTION in Figure. The reason it was made into a separate class (rather 

than as a pair of inverse relationships) is because it includes the relationship 

attribute Grade. 

 

Hence, the M:N relationship is mapped to the class GRADE, and a 

pair of 1:N relationships, one between STUDENT and GRADE and the 

other between SECTION and GRADE. These relationships are represented 

by the following relationship properties: Completed_sections of 

STUDENT; Section and Student of GRADE; and Students of SECTION. 

Finally, the class DEGREE is used to represent the composite, multivalued 

attribute degrees of GRAD_STUDENT. Because the previous example does 

not include any interfaces, only classes, we now utilize a different example 

to illustrate interfaces and interface (behavior) 
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inheritance. Figure 3.1.3(a) is part of a database schema for storing 

geometric objects. An interface GeometryObject is specified, with 

operations to calculate the perimeter and area of a geometric object, plus 

operations to translate (move) and rotate an object. Several classes 

(RECTANGLE, TRIANGLE, CIRCLE,...) inherit the Geometry Object 

interface. Since Geometry Object is an interface, it is noninstantiable— that 

is, no objects can be created based on this interface directly. However, 

objects of type RECTANGLE, TRIANGLE, CIRCLE, ... can be created, 

and these objects inherit all the operations of the GeometryObject interface. 

Note that with interface inheritance, only operations are inherited, not 

properties (attributes, relationships). Hence, if a property is needed in the 

inheriting class, it must be repeated in the class definition, as with the 

Reference_point attribute in Figure. Notice that the inherited operations can 

have different implementations in each class. For example, the 

implementations of the area and perimeter operations may be different for 

RECTANGLE, TRIANGLE, and CIRCLE. Multiple inheritance of 

interfaces by a class is allowed, as is multiple inheritance of interfaces by 

another interface. However, with the extends (class) inheritance, multiple 

inheritance is not permitted. Hence, a class can inherit via extends from at 

most one class (in addition to inheriting from zero or more interfaces). 

 

5.1.15 OBJECT QUERY LANGUAGES (OQL) 

 

The object query language OQL is the query language proposed 

for the ODMG object model. It is designed to work closely with the 

programming languages for rich an ODMG binding is defined, such as C++, 

Smalltalk, and Java. Hence, an OQL query embedded into one of these 

programming languages can return objects that match the type system of 

that language. Additionally, the implementations of class operations in an 

ODMG schema can have their code written in these programming 

languages. The OQL syntax for queries is similar to the syntax of the 

relational standard query language SQL, with additional features for 

ODMG concepts, such as object identity, complex objects, operations, 

inheritance, polymorphism, and relationships. 

 

In Section we will discuss the syntax of simple OQL queries and the 

concept of using named objects or extents as database entry points. Then, 

in Section we will discuss the structure of query results and the use of path 

expressions to traverse relationships among objects. Other OQL features for 

handling object identity, inheritance, polymorphism, and other object-

oriented concepts are discussed in Section. The examples to illustrate OQL 

queries are based on the UNIVERSITY database schema given in Figure. 

The basic OQL syntax is a select ... from ... where ... structure, as it is for 

SQL. For example, the query to retrieve the names of all departments in the 

college of ‘Engineering’ can be written as follows: 
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In general, an entry point to the database is needed for each query, 

which can be any named persistent object. For many queries, the entry point 

is the name of the extent of a class. Recall that the extent name is considered 

to be the name of a persistent object whose type is a collection (in most 

cases, a set) of objects from the class. Looking at the extent names in 

Figure, the named object DEPARTMENTS is of type 

set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY 

is of type set<FACULTY>; and so on. 

 

The use of an extent name—DEPARTMENTS in Q0—as an entry 

point refers to a persistent collection of objects. Whenever a collection is 

referenced in an OQL query, we should define an iterator variable42—D 

in Q0—that ranges over each object in the collection. In many cases, as in 

Q0, the query will select certain objects from the collection, based on the 

conditions specified in the where clause. In Q0, only persistent objects D 

in the collection of DEPARTMENTS that satisfy the condition D.College 

= ‘Engineering’ are selected for the query result. For each selected object 

D, the value of D.Dname is retrieved in the query result. Hence, the type of 

the result for Q0 is bag<string> because the type of each Dname value is 

string (even though the actual result is a set because Dname is a key 

attribute). In general, the result of a query would be of type bag for select 

... from ... and of type set for select distinct ... from ... , as in SQL (adding 

the keyword distinct eliminates duplicates). Using the example in Q0, there 

are three syntactic options for specifying iterator variables: 

 
We will use the first construct in our examples. The named objects 

used as database entry points for OQL queries are not limited to the names 

of extents. Any named persistent object, whether it refers to an atomic 

(single) object or to a collection object, can be used as a database entry 

point. 
 

5.2.1 INTRODUCTION TO TEMPORAL DATABASE 
 

 

Temporal databases, in the broadest sense, encompass all database 

applications that require some aspect of time when organizing their 

information. Hence, they provide a good example to illustrate the need for 

developing a set of unifying concepts for application developers to use. 

Temporal database applications have been developed since the early days 

of database usage. 
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Figure 5.1.9 Trigger T1 illustrating the syntax for defining triggers in 

SQL-99. 

 

However, in creating these applications, it is mainly left to the 

application designers and developers to discover, design, program, and 

implement the temporal concepts they need. There are many examples of 

applications where some aspect of time is needed to maintain the 

information in a database. These include healthcare, where patient histories 

need to be maintained; insurance, where claims and accident histories are 

required as well as information about the times when insurance policies are 

in effect; reservation systems in general (hotel, airline, car rental, train, and 

so on), where information on the dates and times when reservations are in 

effect are required; scientific databases, where data collected from 

experiments includes the time when each data is measured; and so on. Even 

the two examples used in this book may be easily expanded into temporal 

applications. In the COMPANY database, we may wish to keep SALARY, 

JOB, and PROJECT histories on each employee. 

 

In the UNIVERSITY database, time is already included in the 

SEMESTER and YEAR of each SECTION of a COURSE, the grade history 

of a STUDENT, and the information on research grants. In fact, it is realistic 

to conclude that the majority of database applications have some temporal 

information. However, users often attempt to simplify or ignore temporal 

aspects because of the complexity that they add to their applications. In this 

section, we will introduce some of the concepts that have been developed 

to deal with the complexity of temporal database applications. An overview 

of how time is represented in databases, the different types of temporal 

information, and some of the different dimensions of time that may be 

needed. This section gives some additional options for representing time that 

are possible in database models that allow complex-structured objects, such 

as object databases. Section introduces operations for querying temporal 

databases, and gives a brief 
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overview of the TSQL2 language, which extends SQL with temporal 

concepts. Section focuses on time series data, which is a type of temporal 

data that is very important in practice. 
 

5.2.2 TIME ONTOLOGY 
 

 

For temporal databases, time is considered to be an ordered 

sequence of points in some granularity that is determined by the 

application. For example, suppose that some temporal application never 

requires time units that are less than one second. Then, each time point 

represents one second using this granularity. In reality, each second is 

(short) time duration, not a point, since it may be further divided into 

milliseconds, microseconds, and so on. Temporal database researchers have 

used the term chronon instead of point to describe this minimal granularity 

for a particular application. The main consequence of choosing a minimum 

granularity—say, one second—is that events occurring within the same 

second will be considered to be simultaneous events, even though in reality 

they may not be. 

 

Because there is no known beginning or ending of time, one needs 

a reference point from which to measure specific time points. Various 

calendars are used by various cultures (such as Gregorian (western), 

Chinese, Islamic, Hindu, Jewish, Coptic, and so on) with different reference 

points. A calendar organizes time into different time units for convenience. 

Most calendars group 60 seconds into a minute, 60 minutes into an hour, 24 

hours into a day (based on the physical time of earth’s rotation around its 

axis), and 7 days into a week. Further grouping of days into months and 

months into years either follow solar or lunar natural phenomena, and are 

generally irregular. In the Gregorian calendar, which is used in most western 

countries, days are grouped into months that are 28, 29, 30, or 31 days, and 

12 months are grouped into a year. Complex formulas are used to map the 

different time units to one another. 

 

In SQL2, the temporal data types (see Chapter 4) include DATE 

(specifying Year, Month, and Day as YYYY-MM-DD), TIME (specifying 

Hour, Minute, and Second as HH:MM:SS), TIMESTAMP (specifying a 

Date/Time combination, with options for including subsecond divisions if 

they are needed), INTERVAL (a relative time duration, such as 10 days or 

250 minutes), and PERIOD (an anchored time duration with a fixed starting 

point, such as the 10-day period from January 1, 2009, to January 10, 2009, 

inclusive). Event Information versus Duration (or State) Information. A 

temporal database will store information concerning when certain events 

occur, or when certain facts are considered to be true. There are several 

different types of temporal information. Point events or facts are typically 

associated in the database with a single time point in some granularity. For 

example, a bank deposit event may be associated with the timestamp when 

the deposit was made, or the total monthly sales of a product (fact) may be 

associated with a particular month (say, February 2010). Note that even 

though such events or facts may have 
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different granularities, each is still associated with a single time value in the 

database. This type of information is often represented as time series data 

as we will discuss. Duration events or facts, on the other hand, are 

associated with a specific time period in the database. For example, an 

employee may have worked in a company from August 15, 2003 until 

November 20, 2008. 

 

A time period is represented by its start and end time points 

[START-TIME, ENDTIME]. For example, the above period is represented 

as [2003-08-15, 2008-11-20]. Such a time period is often interpreted to mean 

the set of all time points from starttime to end-time, inclusive, in the 

specified granularity. Hence, assuming day granularity, the period [2003-

08-15, 2008-11-20] represents the set of all days from August 15, 2003, 

until November 20, 2008, inclusive.13 Valid Time and Transaction Time 

Dimensions. Given a particular event or fact that is associated with a 

particular time point or time period in the database, the association may be 

interpreted to mean different things. The most natural interpretation is that 

the associated time is the time that the event occurred, or the period during 

which the fact was considered to be true in the real world. If this 

interpretation is used, the associated time is often referred to as the valid 

time. A temporal database using this interpretation is called a valid time 

database. However, a different interpretation can be used, where the 

associated time refers to the time when the information was actually stored 

in the database; that is, it is the value of the system time clock when the 

information is valid in the system. In this case, the associated time is called 

the transaction time. A temporal database using this interpretation is called 

a transaction time database. 

 

Other interpretations can also be intended, but these are considered 

to be the most common ones, and they are referred to as time dimensions. 

In some applications, only one of the dimensions is needed and in other 

cases both time dimensions are required, in which case the temporal 

database is called a bitemporal database. If other interpretations are 

intended for time, the user can define the semantics and program the 

applications appropriately, and it is called a user-defined time. The next 

section shows how these concepts can be incorporated into relational 

databases, and Section shows an approach to incorporate temporal concepts 

into object databases. 
 

5.2.3 STRUCTURE AND GRANULARITY 
 

 

The time domain (or ontology) specifies the basic building blocks 

of time. It is generally modeled as a set of time instants (or points) with an 

imposed partial order, e.g., (N, <). Additional axioms impose more structure 

on the time domain, yielding more refined time domains. Linear time 

advances from past to future in a step-by-step fashion. This model of time 

is mainly used in the database area. In contrast, AI applications often used 

a branching time model, which has a tree-like structure, allowing for 

possible futures. Time is linear from 
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the past to now, where it divides into several time lines; along any future 

path, additional branches may exist. This yields a tree-like structure rooted 

at now. Now marks the current time point and is constantly moving forward. 

The time domain can be bounded in the past and/or in the future, i.e., a first 

and/or last time instant exists; otherwise, it is called unbounded. The time 

domain can be dense, discrete, or continuous. In a discrete time domain, 

time instants are non-decomposable units of time with a positive duration, 

called chronons. A chronon is the smallest duration of time that can be 

represented. This time model is isomorphic to the natural numbers. In 

contrast, in a dense time domain, between any two instants of time, there 

exists another instant; this model is isomorphic to the rational numbers. 

Finally, continuous time is dense and does not allow “gaps” between 

consecutive time instants. Time instants are durationless. The continuous 

time model is isomorphic to the real numbers. While humans perceive time 

as continuous, a discrete linear time model is generally used in temporal 

databases for several practical reasons, e.g., measures of time are generally 

reported in terms of chronons, natural language references are compatible 

with chronons, and any practical implementation needs a discrete encoding 

of time. A limitation of a discrete time model is, for example, the inability 

to represent continuous phenomena. 

 

A time granularity is a partitioning of the time domain into a finite 

set of segments, called granules, providing a particular discrete image of a 

(possibly continuous) timeline. The main aim of granularities is to support 

user friendly representations of time. For instance, birth dates are typically 

measured at the granularity of days, business appointments at the 

granularity of hours, and train schedules at the granularity of minutes. 

Multiple granularities are needed in many real-world applications. 

 

In any specific application, the granularity of time has some 

practical magnitude. For instance, the time-point that a business event, like 

a purchase, is associated with a date, so that a day is the proper granule for 

most business transactions. People do not schedule themselves for intervals 

of less than a minute, while database transactions may be measured in 

milliseconds. Eventually we are limited by the precision that our hardware 

can recognize; fractions of microseconds are the finest grain here. We use 

G to denote the granularity; it is in effect an interval. The finiteness of 

measurement granules leads to a confusion of event times and intervals. If 

we limit our event measures to dates (G = 1 day), and we say that an event 

occurred on such and-such a day, then implicit for most of us is also that the 

event spanned some interval within that day. A point event is then 

associated with an interval of one granule length. There will be a smallest 

time granule G, perhaps intervals of seconds or days, which follow each 

other without gaps, and are identified by the timepoint at their beginning. 

True Intervals are sequences of event measuring interval 

 

However, problems arise with this simplification. Inconsistencies 

occur when an inclusive interval is defined by two event time measurements 

with an implicit grain. First we have to round actual 
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measurements to the integer grain size used; then we add the granule size to 

the result: 

 
 

where ts denotes the value corresponding to the start of the interval and t/the 

value when the interval is finished. Thus, if movie is shown daily from the 

12th to the 19th of a month, there will be 19-12+1 = 8 performance days. 

While we are all used to performing such adjustments when computing with 

intervals, a database system which deals with temporal events must present 

consistent temporal semantics to the user to avoid confusion. We cannot use 

an event directly to compute an interval but always have to correct for the 

associated grain size. While in any one application use of a fixed grain size 

is feasible, problems arise if we merge information from distinct 

applications. A database system has to carry out the computations to satisfy 

the application semantics. If those include the use of finite events, then the 

grain size assumption made must be explicitly stated. Many granularities 

may need to be simultaneously active. In our formulation we will require 

two datatypes, infinitesimal time points for events and intervals for 

histories, to deal with all temporal data. 
 

5.2.4 TEMPORAL DATA MODELS 
 

 

Most of the work in the research area of temporal databases has been 

done in respect of the relational data model. In this section, as shown below 

in table 2 and Table 3, some of the most important temporal data models are 

compared 
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Ariav’s model used tuple time stamping with time being represented 

by discrete time points in bitemporal mode. The model is conceptually 

simplistic but difficult to implement in efficiency and reliability terms. Ben-

Zvi’s time relational model (TRM) was a pioneering work in many aspects. 

The most important idea of TRM is perhaps the non 



124  

first normal form (NFNF). Ben-Zvi’s concept of effective time and 

registration time, which are now known as valid time (VT) and transaction 

time (TT), respectively, added new dimensions to time varying information 

computing. Ben-Zvi was the first to coin the term and notion of time-

invariant key for his non first normal tuples, called tuple version sets in his 

terminology. Differentiation between an error and a change was recognized 

and both of them were made queriable. Also the need for fast access to 

current data was recognized. Clifford and Croker’s model followed 

historical relational data model (HRDM) and tuples are heterogeneous in 

their temporal dimension. Unfortunately, the historical relational algebra is 

not a complete algebra w.r.t. HRDM. So, the cartesian product of three-

dimensional relation (e.g. join operation) is not clear and hence results are 

not reliable. Gadia’s model has temporal element as an appropriate datatype 

for time. This model assumes that key values donot change with time. 

Another requirement is all attributes in a tuple have the same time domain. 

This requirement is called homogeneity. The positive aspect of Gadia’s 

model is that it minimizes redundancy. But when concatenation of partial 

temporal elements along with tuple homogeneity is implemented, the query 

results into incomplete or missing information. Jensen & Snodgrass model 

proposed bitemporal conceptual data model (BCDM), allowing to associate 

both valid and transaction times with data. The domains of valid and 

transaction times are the finite sets DVT and DTT, respectively. A valid 

time chronon cv is a time point belonging to DVT and a transaction time 

chronon ct is a time point belonging to DTT. A bitemporal chronon cb = (ct 

, cv) is an ordered pair consisting of a transaction time chronon and a valid 

time chronon. The schema of a bitemporal relation R, defined on the set U 

= {A1,A2,...,An} of non- timestamp attributes, is of the form R = 

(A1,A2,...,An | T), that is, it consists of n non-timestamp attributes A1,A2,...,An, 

with domain dom(Ai) for each i ∈ [1,n], and an implicit timestamp attribute T. 

The domain of T is (DTT 

∪{UC})× DVT , where UC is a special value that can be assumed by a 

transaction time chronon to express the condition “until changed”. For 

instance, to state that a tuple valid at time cv is current in the database, the 

bitemporal chronon (UC, cv) must be assigned to the tuple timestamp. As 

a general rule, they associate a set of bitemporal chronons in the two- 

dimensional space with every tuple. Lorentzos’s model followed interval- 

extended relational model (IXRM) and an interval relational algebra for 

the management of interval relations. The fundamental properties of a 

model are that it must be satisfactory and simple. Lorentzos model satisfied 

both aspects. However, when a model is defined, efficiency issues are of 

minor importance. IXRM operations require a great deal of space and time, 

is a point of concern. Snodgrass’s Model uses temporal query language 

(TQuel) which is based on the predicate calculus. One of the key features 

of this model is when the algebra is used to implement the TQuel, the a 

conversion will be necessary between tuple timestamping (where each tuple 

is associated with a single interval) and attribute-value time-stamping 

(where each attribute is associated with potentially multiple intervals). This 

conversion is formalized in a transformation function (T). Though this 

model seems to be more efficient but relatively less user 
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friendly. Tansel’s model used Attribute-value timestamping and used the 

concepts of time by example (TBE) and query by example (QBE). This 

model is quite user friendly. However, nested temporal relations are an area 

of concern since structuring nested temporal relations hinges upon the type 

of associations between the involved entities. Vianu proposed a simple 

extension of the relational data model in order to describe evolution of a 

database over time. A database sequence is defined as a sequence of 

consecutive instances of the database, plus “update mappings” from one 

instance (the “old” one) to the next one (the “new” instance). Constraints 

on the evolution of attribute values of tuples (objects) over time are 

expressed by means of dynamic functional dependencies (DFDs), that make 

it possible to define dependencies between old and new values of attributes 

on updates. Wijsen and his colleagues temporal data model proposed three 

types of keys i.e. snapshot keys (SK), dynamic keys (DK) and temporal keys 

(TK) corresponding to snapshot functional dependency, dynamic 

dependency and temporal dependency, respectively. Let dom be a set of 

atomic values, that is, the union of disjoint domains corresponding to atomic 

types, att be a set of attribute names, and λ be a special attribute used to 

denote object identity. Moreover, let obj be an infinite set of object 

identifiers (OIDs) and class be a set of class names. Given a finite set of 

class names C, a type over C is a set {A1: τ 1, A2: τ 2,..., An: τ n}, where 

A1, A2,... An are distinct attribute names and each τi with 1 ≤ i ≤ n, is either 

an atomic type or a class name in C. A schema is a pair (C,ρ), where C is a 

finite set of class names and ρ is a total function that maps each class 

name in C into a type over C. 

 

Some data models use FNF and others prefer NFNF. The choice 

may depend on the consideration of time as discrete or interval based or 

continuous. Also, the traditional Entity relationship model (ERM) can be 

extended for temporal data models (TDM) by considering suitable operators 

and constructs for their effective and efficient implementation. The 

traditional ERM is capable of capturing the whole temporal aspects. Many 

extensions [15][16] have been proposed to extend the ERM in order to 

capture time varying information. For graphical representation, Unified 

modeling language (UML) is normally used. However, UML constructs in 

reference of temporal data models can be possibly used and drawn using 

application softwares like Rational software architecture. The temporal 

query language (TQuel) supports both valid time and transaction time. It 

also supports user defined time. Tuples are optimally time-stamped with 

either a single valid time stamp (if a relation models events) or a pair of 

valid timestamps (if a relation models intervals), along with transaction 

timestamps, denoting when the tuple was logically inserted into the relation. 

A transaction timestamp of “until changed” indicates that the tuple has not 

been deleted yet. A functional example of temporal database is TimeDB. It 

uses the extension approach with respect to the data structures. TimeDB 

uses a layered approach which means it was built as a front end to a 

commercial DBMS that translates temporal statements into standard SQL 

statements. This way, it is possible to support features such as persistence, 

consistency, concurrency, recovery etc. without having to 
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implement from the scratch. It is a bitemporal DBMS. TimeDB implements 

the query language ATSQL2. ATSQL2 includes not only a bitemporal 

query language but also a bi-temporal modification, data definition and 

constraint specification language. TimeDB implements the temporal 

algebra operations using standard SQL statements. TimeDB supports a 

command oriented user interface 
 

5.2.5 TEMPORAL RELATIONAL ALGEBRAS 
 

 

In Temporal Datalog programs, we do not view predicates as 

representing an infinite collection of finite relations, nor do we manipulate 

finite relations at any given moment in time. Temporal relations are not 

first-class citizens in Temporal Datalog. Moreover, without negation, the 

set difference operation available in the relational algebra cannot be 

specified in Temporal Datalog. To alleviate these limitations, we introduce 

a temporal relational algebra as a query language for Temporal Datalog, 

which is referred to as TRA. Examples of TRA expressions are given in the 

next section 
 

Similarly for the binary operators. In other words, when restricted to 

moments in time, a pointwise operator degenerates into the corresponding 

operator of the relational algebra. Therefore we can explain what a 

pointwise operator does to its operand by looking at the individual results 

for each moment in time. This implies that TRA by design has the relational 

algebra as a special case. 
 

Expressions, Operations An expression of TRA consists of 

compositions of algebraic operators and predicate symbols. Algebraic 

operators are applied to temporal relations and yield temporal relations as 

a result which can then be used as operands in other expressions. In 

addition to the pointwise operators, the signature of TRA is extended with 

temporal and aggregation operators summarized below. In the following, 

we assume familiarity with the notions of a comparator value and 

comparator formula; see [17] for details. Pointwise Operators Pointwise 

operators are ∩, ∪ , × ,−, πX, and σF . At any given moment in time t, the 

outcome of a pointwise operation depends only on the values of its operands 

at time t. For instance, given the expression r ∩ s, the resulting temporal 

relation is the pointwise intersection of r and s. Temporal Operators 

Temporal operators are first, next, prev and fby[·]. The temporal operators 

first and next of TRA do not behave the same way as those of TL do. 

However, we use the same symbols as it is always understood from the 

context which ones are referred to. The 4 temporal operator first freezes a 

temporal relation at its initial value; next and prev shift a given 
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temporal relation in the corresponding direction; fby[·] does temporal 

splicing, i.e., cutting and pasting of temporal relations. Aggregation 

Operators Let x ≥ 1. Aggregation operators are sumx, avgx , count, maxx 

and minx. These pointwise operators are applied to temporal relations with 

arbitrary arities, and produce unary temporal relations as a result. 

Denotational Semantics Given a Temporal Datalog program db, an 

expression over db contains only those predicate symbols appearing in db, 

and terms from the Herbrand universe of db. We assume that all expressions 

are legal, i.e., arities of relations given in an expression match with respect 

to the operations involved, and so do the types of attributes over which 

aggregation operations are performed. The meaning of an expression of 

TRA is a temporal relation, just like the meaning of a predicate symbol 

defined in db. Let [[E]](db) denote the denotation (meaning) of E with 

respect to a given temporal database db. In particular, we have that [[E]](db) 

is an element of [ω → P(U k )] for some k ≥ 0. In general, given an 

expression E of TRA, we have that [[E]] ∈ DB → [ n≥0 [ω → P(U n )] 

where DB is the set of Temporal Datalog programs, and U is the set of 

ground terms of TL. Given db ∈ DB, s ∈ ω, x ≥ 1, and TRA expressions 

A and B, the following are the definitions of the denotations of each kind 

of expressions of TRA. 

 

1. [[p]](db) = (uM(db))(p) where p is a predicate symbol appearing in db. 
 

2. [[A∇B]](db) = [[A]](db)∇[[B]](db) where ∇ is any of ∩, ∪, × and −. 

 

3. [[∇A]](db) = ∇[[A]](db) where ∇ is any of πX, σF , sumx, avgx, 

maxx, minx and count. 

4. [[first A]](db) = λt.[[A]](db)(0). 
 

5. [[next A]](db) = λt.[[A]](db)(t + 1). 
 

6. [[prev A]](db) = λt. [[A]](db)(t − 1), t > 0 ∅, t = 0 
 

7. [[A fby[s] B]](db) = λt. [[A]](db)(t), t ≤ s [[B]](db)(t), t > s Item 1 

provides the link to the temporal database: the denotation of a predicate 

symbol is the temporal relation that the predicate represents with respect 

to the minimum model of db. Items 4 through 7 formalizes what temporal 

operators do to their operands. At time 0, the value of any expression of 

the form prev A is the empty set, because we cannot go into the past beyond 

time 0. 
 

5.2.6 INTRODUCTION TO SPATIAL DATABASE 
 

 

Spatial databases incorporate functionality that provides support for 

databases that keep track of objects in a multidimensional space. For 

example, cartographic databases that store maps include two-dimensional 

spatial descriptions of their objects—from countries and states to rivers, 
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cities, roads, seas, and so on. The systems that manage geographic data 

and related applications are known as Geographical Information Systems 

(GIS), and they are used in areas such as environmental applications, 

transportation systems, emergency response systems, and battle 

management. Other databases, such as meteorological databases for 

weather information, are three-dimensional, since temperatures and other 

meteorological information are related to three-dimensional spatial points. 

In general, a spatial database stores objects that have spatial characteristics 

that describe them and that have spatial relationships among them. The 

spatial relationships among the objects are important, and they are often 

needed when querying the database. Although a spatial database can in 

general refer to an n-dimensional space for any n, we will limit our 

discussion to two dimensions as an illustration. A spatial database is 

optimized to store and query data related to objects in space, including 

points, lines and polygons. Satellite images are a prominent example of 

spatial data. Queries posed on these spatial data, where predicates for 

selection deal with spatial parameters, are called spatial queries. For 

example, “What are the names of all bookstores within five miles of the 

College of Computing building at Georgia Tech?” is a spatial query. 

Whereas typical databases process numeric and character data, additional 

functionality needs to be added for databases to process spatial data types. 

A query such as “List all the customers located within twenty miles of 

company headquarters” will require the processing of spatial data types 

typically outside the scope of standard relational algebra and may involve 

consulting an external geographic database that maps the company 

headquarters and each customer to a 2-D map based on their address. 

Effectively, each customer will be associated to a <latitude, longitude> 

position. A traditional B+-tree index based on customers’ zip codes or other 

nonspatial attributes cannot be used to process this query since traditional 

indexes are not capable of ordering multidimensional coordinate data. 

Therefore, there is a special need for databases tailored for handling spatial 

data and spatial queries. 
 

5.2.7 DEFINITION 
 

 

The common analytical operations involved in processing 

geographic or spatial data. Measurement operations are used to measure 

some global properties of single objects (such as the area, the relative size 

of an object’s parts, compactness, or symmetry), and to measure the relative 

position of different objects in terms of distance and direction. Spatial 

analysis operations, which often use statistical techniques, are used to 

uncover spatial relationships within and among mapped data layers. An 

example would be to create a map—known as a prediction map—that 

identifies the locations of likely customers for particular products based on 

the historical sales and demographic information. Flow analysis operations 

help in determining the shortest path between two points and also the 

connectivity among nodes or regions in a graph. Location analysis aims to 

find if the given set of points and lines lie within a given polygon (location). 

The process involves generating a 



129  

buffer around existing geographic features and then identifying or selecting 

features based on whether they fall inside or outside the boundary of the 

buffer. Digital terrain analysis is used to build three- dimensional models, 

where the topography of a geographical location can be represented with an 

x, y, z data model known as Digital Terrain (or Elevation) Model 

(DTM/DEM). The x and y dimensions of a DTM represent the horizontal 

plane, and z represents spot heights for the respective x, y coordinates. Such 

models can be used for analysis of environmental data or during the design 

of engineering projects that require terrain information. Spatial search 

allows a user to search for objects within a particular spatial region. For 

example, thematic search allows us to search for objects related to a 

particular theme or class, such as “Find all water bodies within 25 miles of 

Atlanta” where the class is water. 

 

There are also topological relationships among spatial objects. 

These are often used in Boolean predicates to select objects based on their 

spatial relationships. For example, if a city boundary is represented as a 

polygon and freeways are represented as multilines, a condition such as 

“Find all freeways that go through Arlington, Texas” would involve an 

intersects operation, to determine which freeways (lines) intersect the city 

boundary (polygon). 

 

Table Common Types of Analysis for Spatial Data 

 
 

5.2.8 TYPES OF SPATIAL DATA 
 

 

This section briefly describes the common data types and models for 

storing spatial data. Spatial data comes in three basic forms. These forms 

have become a de facto standard due to their wide use in commercial 

systems. 

 

■ Map Data includes various geographic or spatial features of objects in a 

map, such as an object’s shape and the location of the object within the map. 

The three basic types of features are points, lines, and polygons (or areas). 

Points are used to represent spatial characteristics of objects whose 

locations correspond to a single 2-d coordinate (x, y, or longitude/latitude) 

in the scale of a particular application. Depending on the scale, some 

examples of point objects could be buildings, cellular towers, or stationary 

vehicles. Moving locations that change over time. Lines represent objects 
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having length, such as roads or rivers, whose spatial characteristics can be 

approximated by a sequence of connected lines. Polygons are used to 

represent spatial characteristics of objects that have a boundary, such as 

countries, states, lakes, or cities. Notice that some objects, such as buildings 

or cities, can be represented as either points or polygons, depending on the 

scale of detail. 

 

■ Attribute data is the descriptive data that GIS systems associate with 

map features. For example, suppose that a map contains features that 

represent counties within a US state (such as Texas or Oregon). Attributes 

for each county feature (object) could include population, largest city/town, 

area in square miles, and so on. Other attribute data could be included for 

other features in the map, such as states, cities, congressional districts, 

census tracts, and so on. 

 

■ Image data includes data such as satellite images and aerial 

photographs, which are typically created by cameras. Objects of interest, 

such as buildings and roads, can be identified and overlaid on these images. 

Images can also be attributes of map features. One can add images to other 

map features so that clicking on the feature would display the image. Aerial 

and satellite images are typical examples of raster data. 

 

Models of spatial information are sometimes grouped into two 

broad categories: field and object. A spatial application (such as remote 

sensing or highway traffic control) is modeled using either a field- or an 

object-based model, depending on the requirements and the traditional 

choice of model for the application. Field models are often used to model 

spatial data that is continuous in nature, such as terrain elevation, 

temperature data, and soil variation characteristics, whereas object models 

have traditionally been used for applications such as transportation 

networks, land parcels, buildings, and other objects that possess both spatial 

and non-spatial attributes. 
 

5.2.9 GEOGRAPHICAL INFORMATION SYSTEMS 

(GIS) 
 

 

Geographic Information Systems (GIS) contain spatial information 

about cities, states, countries, streets, highways, lakes, rivers, and other 

geographical features and support applications to combine such spatial 

information with non-spatial data. Spatial data is stored in either raster or 

vector formats. In addition, there is often a temporal dimension, as when we 

measure rainfall at several locations over time. An important issue with 

spatial datasets is how to integrate data from multiple sources, since each 

source may record data using a different coordinate system to identify 

locations. Now let us consider how spatial data in a GIS is analyzed. Spatial 

information is almost naturally thought of as being overlaid on maps. 

Typical queries include "What cities lie on 1-94 between Madison and 

Chicago?" and "What is the shortest route from Madison to St. 
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Louis?" These kinds of queries can be addressed using the techniques. An 

emerging application is in-vehicle navigation aids. With Global Positioning 

System (CPS) technology, a car's location can be pinpointed, and by 

accessing a databa.se of local maps, a driver can receive directions from In 

his or her current location to a desired destination; this application also 

involves mobile database access! In addition, many applications involve 

interpolating measurements at certain locations across an entire region to 

obtain a model and combining overlapping models. For example, if -ve have 

measured rainfall at certain locations, we can use the Triangulated Irregular 

Network (TIN) approach to triangulate the region, with the locations at 

which we have measurements being the vertices of the triangles. Then, we 

use some form of interpolation to estimate the rainfall at points within 

triangles. Interpolation, triangulation, overlays, visualization of spatial data, 

and many other domain-specific operations are supported in GIS products 

such ARC-In while spatial query processing techniques are an important 

part of a GIS product, considerable additional functionality must be 

incorporated as well. How best to extend 0 to 1 systems with this additional 

functionality is an important problem yet to be resolved. Agreeing on 

standards for data representation formats and coordinate system is another 

major challenge facing the field. 
 

5.2.10 CONCEPTUAL DATA MODELS FOR SPATIAL 

DATABASES 
 

 

Conceptual data model: provide the organizing principles that 

translate the external data models into functional descriptions of how data 

objects are related to one another (e.g. non-spatial: E-R model; spatial: 

raster, vector, object representation). 
 

 

5.2.11 LOGICAL DATA MODELS FOR SPATIAL 

DATABASES 
 

 

Logical data model: provide the explicit forms that the conceptual 

models can take and is the first step in computing (e.g. non-spatial: 

hierarchical, network, relational; spatial: 2-d matrix, map file, location list, 

point dictionary, arc/nodes). 
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Logical data modeling involves defining the logical structure for the 

data in terms of the database's model. Logical modeling takes a conceptual 

model and seeks to produce a logical schema for a database. For example, 

the general definition of each relation in a DBMS is concerned with: (i) 

what each attribute in the relation should represent the types of data 

identified during conceptual modeling; (ii) which attributes are key values 

and (iii) how different relations are joined within a DBMS and defined 

during logical data modeling. 
 

 

5.2.12 RASTER AND VECTOR MODEL 
 

 

Data structures are complex for GIS because they must include 

information pertaining to entities with respect to: position, topological 

relationships, and attribute information. It is the topologic and spatial 

aspects of GIS that distinguish it from other types of data bases. 
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Introduction: There are presently three types of representations for 

geographic data: raster vector, and objects. 

 

raster - set of cells on a grid that represents an entity (entity --> 

symbol/color --> cells). 

vector - an entity is represented by nodes and their connecting arc or line 

segment (entity --> points, lines or areas --> connectivity) 

 

object - an entity is represented by an object which has as one of its 

attributes spatial information. 

 

Raster Data model 

 

Definition: realization of the external model which sees the world as a 

continuously varying surface (field) through the use of 2-D Cartesian arrays 

forming sets of thematic layers. Space is discredited into a set of connected 

two dimensional units called a tessellation. 

 

Map overlays: separate set of Cartesian arrays or "overlays" for each entity. 

Logical data models: 2-D array, vertical array, and Map file 

 

Each overlay is a 2-D matrix of points carrying the value of a single 

attribute. Each point is represented by a vertical array in which each array 

position carries a value of the attribute associated with the overlay. 

 

Map file - each mapping unit has the coordinates for cell in which it occurs 

(greater structure, many to one relationship). Compact methods for coding 

 

Vertical array not conducive to compact data coding because it 

references different entities in sequence and it lacks many to one 

relationship. The third structure references a set of points for a region (or 

mapping unit) and allows for compaction. Chain codes: a region is defined 

in terms of origin and (0 - 3) for E, N, W, S (Map file) (binary data). 

 

+ reduced storage. 

+ area, perimeter, shape est. 

- overlay difficult. 

 

Run-length codes: row #, begin, end (Map file  entity #, # pix (2-D 

matrix). 

+ reduce storage. 

- overlay difficult. 

 

Block codes: 2-D rle, regions stored using origin and radius. 

+ reduced storage. 

+ U & I of regions easy. 
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Quadtrees: recursive decomposition of a 2-D array into quads until the 

next subdivision yields a region containing a single entity. 

+ reduced storage. 

+ variable resolution. 

+ overlay of variable resolution data. 

+ fast search. 

 

Morton Sequencing 

Morton Sequencing Overlay 

Morton Homework 

 

Vector data model 

 

Definition: realization of the discrete model of real world using structures 

for storing and relating points, lines and polygons in sets of thematic layers. 

 
a. Introduction 

✓ represents an entity as exact as possible. 

✓ coordinate space continuous (not quantized like raster). 

✓ Structured as a set of thematic layers 

 
b. Representation 

✓ Point entities: geographic entities that are positioned by a single 
x,y coordinate. (historic site, wells, rare flora. The data record 

consists for x,y - attribute. 

✓ Line Entity: (rivers, roads, rail) all linear feature are made up of line 
segments. a simple line 2 (x,y) coordinates. 

✓ An arc or chain or string is a set of n (x,y) coordinate pairs that 
describe a continuous line. The shorter the line segments the closer 

the chain will approximate a continuous curve. Data record n(x,y). 

✓ A line network gives information about connectivity between line 

segments in the form of pointers or relations contained in the data 
structure. Often build into nodes pointers to define connections and 

angles indicating orientation of connections (fully defines 

topology). 

 
Area Entity: data structures for storing regions. Data types, land cover, 

soils, geology, land tenure, census tract, etc. 

Cartographic spaghetti or "connect the dots". Early development in 

automated cartography, a substitute for mechanical drawing. Numerical 

storage, spatial structure evident only after plotting, not in file. 
 

✓ Location list 

✓ describe each entity by specifying coordinates around its perimeter. 
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✓ shared lines between polygons. 

✓ polygon sliver problems. 

✓ no topology (neighbor and island problems). 

✓ error checking a problem. 

 

c. Point dictionary 

Unique points for entire file, no sharing of lines as in location lists 

(eliminate sliver problem) but still has other problems. expensive searches 

to construct polygons. 

 
d. Dime Files (Dual Independent Mapping and Encoding) 

Designed to represent points lines and areas that form a city though a 

complete representation of network of streets and other linear features. 

allowed for topologically based verification. 

no systems of directories linking segments together (maintenance problem). 

 

e. Arc/node 

Same topological principles as the DIME system. DIME defined 

by line segments, chains based on records of uncrossed boundary lines 

(curved roads a problem for DIME). chains or boundaries serve the 

topological function of connecting two end points called a node and 

separating two zones. points between zones cartographically not 

topologically required (generalization possible). solves problems discussed 

above (neighbor, dead ends, weird polygons). can treat data input and 

structure independently. 
 

5.2.13 PHYSICAL DATA MODELS FOR SPATIAL 

DATABASES 
 

 

Physical data modeling involves mapping the conceptual and logical 

models into a database implementation (Fig. 4.8). The result of physical 

modeling is a physical schema, which is tailored to a specific DBMS. 

Physical modeling fills in the blanks within the logical model required for 

a concrete DBMS, specifying actual values (data types) of each attribute, 

giving working names to the relations. Physical modeling results in a 

working physical database definition. 
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5.2.14 CLUSTERING METHODS (SPACE FILLING 

CURVES) 
 

 

Spatial data tends to be highly correlated. For example, people with 

similar characteristics, occupations, and backgrounds tend to cluster 

together in the same neighborhoods. The three major spatial data mining 

techniques are spatial classification, spatial association, and spatial 

clustering. 

 

■ Spatial classification. The goal of classification is to estimate the value 

of an attribute of a relation based on the value of the relation’s other 

attributes. An example of the spatial classification problem is determining 

the locations of nests in a wetland based on the value of other attributes (for 

example, vegetation durability and water depth); it is also called the location 

prediction problem. Similarly, where to expect hotspots in crime activity is 

also a location prediction problem. 

 

■ Spatial association. Spatial association rules are defined in terms of 

spatial predicates rather than items. A spatial association rule is of the 

form 
 

(that is, a country that is adjacent to the Mediterranean Sea is typically a 

wine exporter) is an example of an association rule, which will have a 

certain support s and confidence c. 
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Spatial colocation rules attempt to generalize association rules to point to 

collection data sets that are indexed by space. There are several crucial 

differences between spatial and nonspatial associations including: 

 

1. The notion of a transaction is absent in spatial situations, since data is 

embedded in continuous space. Partitioning space into transactions would 

lead to an overestimate or an underestimate of interest measures, for 

example, support or confidence. 

 

2. Size of item sets in spatial databases is small, that is, there are many 

fewer items in the item set in a spatial situation than in a nonspatial situation. 

In most instances, spatial items are a discrete version of continuous 

variables. For example, in the United States income regions may be defined 

as regions where the mean yearly income is within certain ranges, such as, 

below $40,000, from $40,000 to $100,000, and above 

$100,000. 

 

■ Spatial Clustering attempts to group database objects so that the most 

similar objects are in the same cluster, and objects in different clusters are 

as dissimilar as possible. One application of spatial clustering is to group 

together seismic events in order to determine earthquake faults. An example 

of a spatial clustering algorithm is density-based clustering, which tries to 

find clusters based on the density of data points in a region. These 

algorithms treat clusters as dense regions of objects in the data space. Two 

variations of these algorithms are density-based spatial clustering of 

applications with noise (DBSCAN) and density-based clustering 

(DENCLUE). DBSCAN is a density-based clustering algorithm because it 

finds a number of clusters starting from the estimated density distribution 

of corresponding nodes. 
 

5.2.15 STORAGE METHODS (R-TREE) 
 

 

The R-tree is a height-balanced tree, which is an extension of the 

B+-tree for k-dimensions, where k > 1. For two dimensions (2-d), spatial 

objects are approximated in the R-tree by their minimum bounding 

rectangle (MBR), which is the smallest rectangle, with sides parallel to 

the coordinate system (x and y) axis, that contains the object. R-trees are 

characterized by the following properties, which are similar to the 

properties for B+-trees but are adapted to 2-d spatial objects. As in Section, 

we use M to indicate the maximum number of entries that can fit in an R-

tree node. 

 

1. The structure of each index entry (or index record) in a leaf node is (I, 

object-identifier), where I is the MBR for the spatial object whose identifier 

is object-identifier. 

 

2. Every node except the root node must be at least half full. Thus, a leaf 

node that is not the root should contain m entries (I, object-identifier) where 

M/2 <= m <= M. Similarly, a non-leaf node that is not the root 
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should contain m entries (I, child-pointer) where M/2 <= m <= M, and I is 

the MBR that contains the union of all the rectangles in the node pointed 

at by child-pointer. 

 

3. All leaf nodes are at the same level, and the root node should have at least 

two pointers unless it is a leaf node. 

 

4. All MBRs have their sides parallel to the axes of the global coordinate 

system. Other spatial storage structures include quadtrees and their 

variations. Quadtrees generally divide each space or subspace into equally 

sized areas, and proceed with the subdivisions of each subspace to identify 

the positions of various objects. Recently, many newer spatial access 

structures have been proposed, and this area remains an active research area. 
 

5.2.16 QUERY PROCESSING 
 

 

Spatial Query Processing in the Euclidean Space R-trees [G84, 

SRF87, BKSS90] are the most popular indexes for Euclidean query 

processing due to their simplicity and efficiency. The R-tree can be viewed 

as a multi-dimensional extension of the B-tree. Figure shows an exemplary 

R-tree for a set of points {a,b,…,j} assuming a capacity of three entries per 

node. Points that are close in space (e.g., a,b) are clustered in the same leaf 

node (E3) represented as a minimum bounding rectangle (MBR). Nodes are 

then recursively grouped together following the same principle until the top 

level, which consists of a single root. 
 

 

Figure 2.1: An R-tree example 

 

R-trees (like most spatial access methods) were motivated by the 

need to efficiently process range queries, where the range usually 

corresponds to a rectangular window or a circular area around a query point. 

The R-tree answers the query q (shaded area) in Figure 2.1 as follows. The 

root is first retrieved and the entries (e.g., E1, E2)  that 



139  

intersect the range are recursively searched because they may contain 

qualifying points. Non-intersecting entries (e.g., E3) are skipped. Note that 

for non-point data (e.g., lines, polygons), the R-tree provides just a filter 

step to prune non-qualifying objects. The output of this phase has to pass 

through a refinement step that examines the actual object representation to 

determine the actual result. The concept of filter and refinement steps 

applies to all spatial queries on non-point objects. A nearest neighbor 

(NN) query retrieves the (k≥1) data point(s) closest to a query point q. The 

R-tree NN algorithm proposed in [HS99] keeps a heap with the entries of 

the nodes visited so far. Initially, the heap contains the entries of the root 

sorted according to their minimum distance (mindist) from q. The entry with 

the minimum mindist in the heap (E1 in Figure 2.1) is expanded, i.e., it is 

removed from the heap and its children (E3, E4, E5) are added together with 

their mindist. The next entry visited is E2 (its mindist is currently the 

minimum in the heap), followed by E6, where the actual result (h) is found 

and the algorithm terminates, because the mindist of all entries in the heap 

is greater than the distance of h. The algorithm can be easily extended for 

the retrieval of k nearest neighbors (kNN). Furthermore, it is optimal (it 

visits only the nodes necessary for obtaining the nearest neighbors) and 

incremental, i.e., it reports neighbors in ascending order of their distance to 

the query point, and can be applied when the number k of nearest neighbors 

to be retrieved is not known in advance. An intersection join retrieves all 

intersecting object pairs (s,t) from two datasets S and T. If both S and T are 

indexed by R-trees, the R- tree join algorithm [BKS93] traverses 

synchronously the two trees, following entry pairs that overlap; non-

intersecting pairs cannot lead to solutions at the lower levels. Several spatial 

join algorithms have been proposed for the case where only one of the inputs 

is indexed by an R-tree or no input is indexed [RSV02]. For point 

datasets, where intersection joins are meaningless, the corresponding 

problem is the e distance join, which finds all pairs of objects (s,t) s ∈ S, t 

∈ T within (Euclidean) distance e from each other. R-tree join can be 

applied in this case as well, the only difference being that a pair of 

intermediate entries is followed if their distance is below (or equal to) e. 

The intersection join can be considered as a special case of the e-distance 

join, where e=0. Finally, a closest-pairs query outputs the (k≥1) pairs of 

objects (s,t) s ∈ S, t ∈ T with the smallest (Euclidean) distance. The 

algorithms for processing such queries [CMTV00] combine spatial joins 

with nearest neighbor search. In particular, assuming that both datasets are 

indexed by R-trees, the trees are traversed synchronously, following the 

entry pairs with the minimum distance. Pruning is based on the mindist 

metric, but this time defined between entry MBRs. As all these algorithms 

apply only location-based metrics to prune the search space, they are 

inapplicable for SNDB. 
 

5.2.17 LET US SUM UP 
 

 

Thus, we have studied basic concepts of object oriented database, 

object identity, encapsulation, methods, persistence and inheritance. With 
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this ODMG as language design mode, ODL (object Definition language) 

and OQL query language. Also the major aspect of spatial and temporal 

database, in short GIS as well. 
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5.2.19 UNIT END EXERCISES 
 

 

1) Explain features of object oriented database with an example. 

 

2) Describe in detail temporal databases. 

 

3) What is a Geographical Information system? Explain Different 

format used to represent geographic data. 

 

4) Write a short note on Spatial database 

 

5) What is GIS? Explain its application. 

 

6) Explain conceptual and logical data model for spatial databases. 

 

7) Explain ODMG model. 

 

 

❖❖❖❖ 
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6 

DEDUCTIVE, ACTIVE, MULTIMEDIA 

AND XML DATABASES 

Unit Structure 

 
6.1.0 Objectives 

6.1.1 Introduction 

6.1.2 Deductive Database 

6.1.3 Introduction to recursive queries 

6.1.4 Datalog Notation 

6.1.5 Clause Form and Horn Clauses 

6.1.6 Interpretation of model 

6.1.7 Least Model semantics 

6.1.8 The fixed point operator 

6.1.9 Safe Datalog program 

6.1.10 Recursive query with negation 

6.2 Active Database 

6.2.1 Languages for rule specification 

6.2.2 Events 

6.2.3 Conditions 

6.2.4 Actions 

6.3 XML and Database 

6.3.1 Structure of XML Data 

6.3.2 XML Document Schema 

6.3.3 Querying and Transformation 

6.3.4 Storage of XML Data. 

6.4 Introduction to multimedia database systems 

6.4.1 LET US SUM UP 

6.4.2 List of References 

6.4.3 Unit End Exercises 
 

6.1.0 OBJECTIVES 
 

 

In this chapter you will learn about: 
 

⮚ Introduction to deductive database. 

⮚ Datalog notation, clause form and horn clauses etc. 

⮚ Basics of active database and XML database-structure schema. 
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⮚ XML data storage, querying and transformation etc. 

⮚ Introduction to multimedia database system. 
 

6.1.1 INTRODUCTION 
 

 

This chapter introduces database concepts for some of the common 

features that are needed by advanced applications and are being used 

widely. We will cover active rules that are used in active database 

applications. We will also discuss deductive databases. It is important to 

note that each of these topics is very broad, and we give only a brief 

introduction to each. 

 

We discuss deductive databases, an area that is at the intersection 

of databases, logic, and artificial intelligence or knowledge bases. A 

deductive database system includes capabilities to define (deductive) 

rules, which can deduce or infer additional information from the facts that 

are stored in a database. Because part of the theoretical foundation for some 

deductive database systems is mathematical logic, such rules are often 

referred to as logic databases. Other types of systems, referred to as expert 

database systems or knowledge-based systems, also incorporate 

reasoning and inferencing capabilities; such systems use techniques 

that were developed in the field of artificial intelligence, including semantic 

networks, frames, production systems, or rules for capturing domain-

specific knowledge. 

 

Also Multimedia databases provide features that allow users to store 

and query different types of multimedia information, which includes images 

(such as pictures and drawings), video clips (such as movies, newsreels, and 

home videos), audio clips (such as songs, phone messages, and speeches), 

and documents (such as books and articles). 
 

6.1.2 DEDUCTIVE DATABASE 
 

 

In a deductive database system we typically specify rules through a 

declarative language a language in which we specify what to achieve 

rather than how to achieve it. An inference engine (or deduction 

mechanism) within the system can deduce new facts from the database by 

interpreting these rules. The model used for deductive databases is closely 

related to the relational data model, and particularly to the domain relational 

calculus formalism. It is also related to the field of logic programming and 

the Prolog language. The deductive database work based on logic has used 

Prolog as a starting point. A variation of Prolog called Datalog is used to 

define rules declaratively in conjunction with an existing set of relations, 

which are themselves treated as literals in the language. Although the 

language structure of Datalog resembles that of Prolog, its operational 

semantics that is, how a Datalog program is executed is still different. 
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A deductive database uses two main types of specifications: facts 

and rules. Facts are specified in a manner similar to the way relations are 

specified, except that it is not necessary to include the attribute names. 

Recall that a tuple in a relation describes some real-world fact whose 

meaning is partly determined by the attribute names. In a deductive 

database, the meaning of an attribute value in a tuple is determined solely 

by its position within the tuple. Rules are somewhat similar to relational 

views. They specify virtual relations that are not actually stored but that can 

be formed from the facts by applying inference mechanisms based on the 

rule specifications. 

 

The main difference between rules and views is that rules may 

involve recursion and hence may yield virtual relations that cannot be 

defined in terms of basic relational views. The evaluation of Prolog 

programs is based on a technique called backward chaining, which involves 

a top-down evaluation of goals. In the deductive databases that use Datalog, 

attention has been devoted to handling large volumes of data stored in a 

relational database. Hence, evaluation techniques have been devised that 

resemble those for a bottom-up evaluation. Prolog suffers from the 

limitation that the order of specification of facts and rules is significant in 

evaluation; moreover, the order of literals within a rule is significant. The 

execution techniques for Datalog programs attempt to circumvent these 

problems. 
 

6.1.3 INTRODUCTION TO RECURSIVE QUERIES 
 

 

As begin with a simple example that illustrates the its of SQL-92 

queries with the power of recursive definitions. Let Assembly be a relation 

with three fields part, subpart, and qty. An example instance of Assembly 

is shown in Figure 4.1.1. Each tuple in Assembly indicates How many 

copies of a particular subpart are Contained in a given part. The first tuple 

indicates, for example, that (1, trike contains three wheels} The Assembly 

relation can be visualized as a tree, as shown in Figure. A. tuple is shown as 

an edge going from the part to the subpart, with the qty value as the edge 

label 

 
Figure 6.1.1 An instance of assembly Figure 6.1.2 Assembly 

instance seen as a Tree 
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A natural question to ask is, "What are the components of a trike?" 

Rather surprisingly, this query is impossible to write in SQL-92. Of course, 

if we look at a given instance of the Assembly relation, we can write a 

'query' that takes the union of the parts that are used in a trike. But such a 

query is not interesting---we want a query that identifies all components of 

a trike for any instance of Assembly, and such a query cannot be written in 

relational algebra or in SQL-92. Intuitively, the problem is that we are 

forced to join the Assembly relation with itself to recognize that trike 

contains spoke and tire, that is, to go one level down the Assembly tree. For 

each additional level, we need an additional join; two joins are needed to 

recognize that trike contains rim, which is a subpart of tire. Thus, the 

number of joins needed to identify all subparts of trike depends on the height 

of the Assembly tree, that is, on the given instance of the Assembly relation. 

No relational algebra query works for all instances; given any query, we 

can construct an instance whose height is greater than the number of joins 

in the query. 
 

6.1.4 DATALOG NOTATION 
 

 

In Datalog, as in other logic-based languages, a program is built 

from basic objects called atomic formulas. It is customary to define the 

syntax of logic-based languages by describing the syntax of atomic 

formulas and identifying how they can be combined to form a program. In 

Datalog, atomic formulas are literals of the form p(a1, a2, ..., an), where p 

is the predicate name and n is the number of arguments for predicate p. 

Different predicate symbols can have different numbers of arguments, and 

the number of arguments n of predicate p is sometimes called the arity or 

degree of p. The arguments can be either constant values or variable names. 

As mentioned earlier, we use the convention that constant values either are 

numeric or start with a lowercase character, whereas variable names always 

start with an uppercase character. 

 

A number of built-in predicates are included in Datalog, which can 

also be used to construct atomic formulas. The built-in predicates are of two 

main types: the binary comparison predicates < (less), <= (less_or_equal), 

> (greater), and >= (greater_or_equal) over ordered domains; and the 

comparison predicates = (equal) and /= (not_equal) over ordered or 

unordered domains. These can be used as binary predicates with the same 

functional syntax as other predicates for example, by writing less(X, 3) or 

they can be specified by using the customary infix notation X<3. Note that 

because the domains of these predicates are potentially infinite, they should 

be used with care in rule definitions. For example, the predicate greater(X, 

3), if used alone, generates an infinite set of values for X that satisfy the 

predicate (all integer numbers greater than 3). 

 

A literal is either an atomic formula as defined earlier called a 

positive literal—or an atomic formula preceded by not. The latter is a 

negated atomic formula, called a negative literal. Datalog programs can 
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be considered to be a subset of the predicate calculus formulas, which are 

somewhat similar to the formulas of the domain relational calculus. In 

Datalog, however, these formulas are first converted into what is known as 

clausal form before they are expressed in Datalog, and only formulas given 

in a restricted clausal form, called Horn clauses can be used in Datalog. 
 

6.1.5 CLAUSE FORM AND HORN CLAUSES 
 

 

A formula in the relational calculus is a condition that includes 

predicates called atoms (based on relation names). Additionally, a formula 

can have quantifiers namely, the universal quantifier (for all) and the 

existential quantifier (there exists). In clausal form, a formula must be 

transformed into another formula with the following characteristics: 
 

■ All variables in the formula are universally quantified. Hence, it is 

not necessary to include the universal quantifiers (for all) explicitly; 

the quantifiers are removed, and all variables in the formula are 
implicitly quantified by the universal quantifier. 

 

■ In clausal form, the formula is made up of a number of clauses, 

where each clause is composed of a number of literals connected by 
OR logical connectives only. Hence, each clause is a disjunction of 

literals. 
 

■ The clauses themselves are connected by AND logical connectives 
only, to form a formula. Hence, the clausal form of a formula is a 
conjunction of clauses. 

 

It can be shown that any formula can be converted into clausal form. 

For our purposes, we are mainly interested in the form of the individual 

clauses, each of which is a disjunction of literals. Recall that literals can be 

positive literals or negative literals. Consider a clause of the form: 
 

 

This clause has n negative literals and m positive literals. Such a 

clause can be transformed into the following equivalent logical formula: 
 

where ⇒ is the implies symbol. The formulas (1) and (2) are equivalent, 

meaning that their truth values are always the same. This is the case because 

if all the Pi literals (i = 1, 2, ..., n) are true, the formula (2) is true only if at 

least  one of the Qi’s  is true, which is the meaning of the 

⇒ (implies) symbol. For formula (1), if all the Pi literals (i = 1, 2, ..., n) are 

true, their negations are all false; so in this case formula (1) is true only if at 
least one of  the Qi’s is true. In Datalog, rules are expressed as a 
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restricted form of clauses called Horn clauses, in which a clause can 

contain at most one positive literal. Hence, a Horn clause is either of the 

form 
 

 

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based 

on formula (5), is that if the predicates P1 AND P2 AND ... AND Pn are 

all true for a particular binding to their variable arguments, then Q is also 

true and can hence be inferred. The Datalog expression (8) can be 

considered as an integrity constraint, where all the predicates must be true 

to satisfy the query. In general, a query in Datalog consists of two 

components: 
 

■ A Datalog program, which is a finite set of rules 

■ A literal P(X1, X2, ..., Xn), where each Xi is a variable or a 
constant 

 

A Prolog or Datalog system has an internal inference engine that 

can be used to process and compute the results of such queries. Prolog 

inference engines typically return one result to the query (that is, one set of 

values for the variables in the query) at a time and must be prompted to 

return additional results. On the contrary, Datalog returns results set-at-a- 

time. 
 

6.1.6 INTERPRETATION OF MODEL 
 

 

There are two main alternatives for interpreting the theoretical 

meaning of rules: proof-theoretic and model-theoretic. In practical systems, 

the inference mechanism within a system defines the exact interpretation, 

which may not coincide with either of the two theoretical interpretations. 

The inference mechanism is a computational procedure and hence provides 

a computational interpretation of the meaning of rules. In this section, first 

we discuss the two theoretical interpretations. Then we briefly discuss 

inference mechanisms as a way of defining the meaning of 
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rules. In the proof-theoretic interpretation of rules, we consider the facts 

and rules to be true statements, or axioms. Ground axioms contain no 

variables. The facts are ground axioms that are given to be true. Rules are 

called deductive axioms, since they can be used to deduce new facts. The 

deductive axioms can be used to construct proofs that derive new facts from 

existing facts. For example, Figure 4.1.3 shows how to prove the fact 

SUPERIOR(james, ahmad) from the rules and facts given in Figure. 
 

Figure 6.1.3 Proving a new fact 

The proof-theoretic interpretation gives us a procedural or 

computational approach for computing an answer to the Datalog query. The 

process of proving whether a certain fact (theorem) holds is known as 

theorem proving. 

 

The second type of interpretation is called the model-theoretic 

interpretation. Here, given a finite or an infinite domain of constant values, 

we assign to a predicate every possible combination of values as arguments. 

We must then determine whether the predicate is true or false. In general, it 

is sufficient to specify the combinations of arguments that make the 

predicate true, and to state that all other combinations make the predicate 

false. If this is done for every predicate, it is called an interpretation of the 

set of predicates. For example, consider the interpretation shown in 

Figure6.1.4 for the predicates SUPERVISE and SUPERIOR. This 

interpretation assigns a truth value (true or false) to every possible 

combination of argument values (from a finite domain) for the two 

predicates. 

 

An interpretation is called a model for a specific set of rules if 

those rules are always true under that interpretation; that is, for any values 

assigned to the variables in the rules, the head of the rules is true when we 

substitute the truth values assigned to the predicates in the body of the rule 

by that interpretation. Hence, whenever a particular substitution (binding) 

to the variables in the rules is applied, if all the predicates in the body of a 

rule are true under the interpretation, the predicate in the head of the rule 

must also be true. The interpretation shown in Figure is a model for the 

two rules shown, since it can never cause the rules to be violated. Notice 

that a rule is violated if a particular binding of constants to the variables 

makes all the predicates in the rule body true but makes the predicate in 

the rule head false. For example, if SUPERVISE(a, b) and SUPERIOR(b, 

c) are both true under some interpretation, but SUPERIOR(a, c) is not true, 

the interpretation cannot be a model for the recursive rule: 
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In the model-theoretic approach, the meaning of the rules is 

established by providing a model for these rules. A model is called a 

minimal model for a set of rules if we cannot change any fact from true to 

false and still get a model for these rules. For example, consider the 

interpretation in Figure, and assume that the SUPERVISE predicate is 

defined by a set of known facts, whereas the SUPERIOR predicate is 

defined as an interpretation (model) for the rules. Suppose that we add the 

predicate SUPERIOR(james, bob) to the true predicates. This remains a 

model for the rules shown, but it is not a minimal model, since changing the 

truth value of SUPERIOR(james,bob) from true to false still provides us 

with a model for the rules. The model shown in Figure is the minimal model 

for the set of facts that are defined by the SUPERVISE predicate. In general, 

the minimal model that corresponds to a given set of facts in the model 

theoretic interpretation should be the same as the facts generated by the 

proof. 

 
Figure 6.1.4 An interpretation that is a minimal model. 

 

Theoretic interpretation for the same original set of ground and 

deductive axioms. However, this is generally true only for rules with a 

simple structure. Once we allow negation in the specification of rules, the 

correspondence between interpretations does not hold. In fact, with 

negation, numerous minimal models are possible for a given set of facts. 

 

A third approach to interpreting the meaning of rules involves 

defining an inference mechanism that is used by the system to deduce 

facts from the rules. This inference mechanism would define a 

computational interpretation to the meaning of the rules. The Prolog logic 

programming language uses its inference mechanism to define the 
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meaning of the rules and facts in a Prolog program. Not all Prolog programs 

correspond to the proof-theoretic or model-theoretic interpretations; it 

depends on the type of rules in the program. However, for many simple 

Prolog programs, the Prolog inference mechanism infers the facts that 

correspond either to the proof-theoretic interpretation or to a minimal model 

under the model-theoretic interpretation. 
 

6.1.7 LEAST MODEL SEMANTICS 
 

 

We want users to be able to understand a Datalog prograrn by 

understanding each rule independent of other rules, with : If the body is 

True, the head is also True. This intuitive reading of a rule suggests that, 

given certain relation instances for the relation names that appear in the 

body of a rule, the relation instance for the relation mentioned in the head 

of the rule contain a certain set of tuples. If a relation Harne R. appears in 

the heads of several rules, the relation instance for R satisfy the intuitive 

reading of all these rules. However, we do not want tuples to be included 

in the instance for R, unless they are necessary to satisfy one of the rules 

defining R,. That is, we want to compute only tuples for R that are supported 

by Salne rule for R. To these ideas precise, we need to introduce the concepts 

of models and least models. A model is a collection of relation instances, 

one instance for each relation in the program, that satisfies the following 

condition. For every rule in the program, whenever we replace each variable 

in the rule by a corresponding constant, the following holds: 

 

If every tuple in the body (obtained by our replacement of variables 

with constants) is in the corresponding relation instance, Then the tuple 

generated for the head (by the assignment of constants to variables that 

appear in the head) is also in the corresponding relation instance. 

Observe that the instances for the input relations are given, and the 

definition of a model essentially restricts the instances for the output 

relations. Consider the rule 

 
Let A be an instance of Assembly and C be an instance of 

components. If A contains the tuple (wheel,tire, 1) and C contains the tuple 

(tire, rim,), then C tuple also contain the tuple (wheel, rim) for the pair of 

instances A. and C to be a model. of course, the instances A and must satisfy 

the inclusion requirement just illustrated for every assignment of constants 

to the variables in the rule: If the tuples in the rule body are in A and C, the 

tuple in the head to be in C. 
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As an example, the instances of Assembly shown in Figure and 

Components had shown in Figure together form a model for the component 

program. Given the instance of Assembly shown in Figure, there is no 

justification for including the tuple (spoke, pedal) to the Components 

instance. Indeed, if we add this tuple to the components instance in 

Figure, We no longer have a model for our program, as the following 

instance of the recursive rule demonstrates, since (wheel, pedal) is not in 

the Components instance: 
 

However, by also adding the tuple (wheel, pedal) to the Components 

instance, we obtain another model of the Components program. Intuitively, 

this is unsatisfactory since there is no justification for adding the tuple 

(spoke, pedal) in the first place, given the tuples in the Assembly instance 

and the rules in the program. 
 

We address this problem by using the concept of a least model. A 

least model of a program is a model M such that for every other model M2 

of the same program, for each relation R in the program the instance for R 

is contained in the instance of R. The 1nodel formed by the instances of 

Assembly and Components shown in Figures and is the least model for the 

components program with the given Assembly instance. 
 

6.1.8 THE FIXED POINT OPERATOR 
 

 

A fixpoint of a function f is a value v such that the function applied 

to the value returns the same value, that is, f(v) = 'U. Consider a function 

applied to a set of values that also returns a set of values. For example, we 

can define double to l)e a function that multiplies every element of the input 

set by two and double+ to be double U identity. T'hus, double( 

{1,2,5} ) == {2,4,lO}, and double+( {1,2,5} ) ::::::: {1,2,4.,5,lO}.The set 

of all even integers which happens to be an infinite set-is a fixpoint of the 

function double-+. Another fixpoint of the function double+ is the set of 

all integers. The first fixpoint (the set of all (even integers) is smaller than 

the second fixpoint (the set of all integers) because it is contained in the 

latter. 

 

The least fixpoint of a function is the fixpoint that is smaller than 

every other fixpoint of that function. In general, it is not guaranteed that a 

function has a load fixpoint. For example, there may be two fixpoints, 

neither of which is smaller than the other. (Does double have a least 

fixpoint? What is it?) No let us turn to functions over sets of tuples, in 

particular, functions defined using relational algebra expressions. The 

Components relation can be defined by an equation. 
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The least fixpoint of f is an instance of Components that satisfies 

this equation. Clearly the projection of the first two fields of the tuples in 

the given instance of the input relation Assembly rnust be included in the 

(instance that is the) least fixpoint of Components. In addition, any tuple 

obtained by joining Components with Assembly and projecting the 

appropriate fields must also be in Components. 

 

A little thought shows that the instance of Components that is the 

least fixpoint of f can be computed using repeated applications of the 

Datalog rules shown in the previous section. Indeed, applying the two 

Datalog rules is identical to evaluating the relational expression used in 

defining components. If an application generates Components tuples that 

are not in the current instance of the Components relation, the current 

instance cannot be the fixpoint. 

 

Therefore, we add the new tuples to Components <tnd evalu<te the 

relational expression (equivalently, the two Datalog rules) again. This 

process is repeated until every tuple generated is already in the current 

instance of Components. Then applying the rules to the current set of tuples 

does not produce any new tuples, we have reached a fixpoint. If components 

is initialized to the empty set of tuples. We infer only tuples that we 

necessary by the definition of a fixpoint, and the fixpoint computed is the 

least fixpoint. 
 

6.1.9 SAFE DATALOG PROGRAM 
 

 

There are two main methods of defining the truth values of 

predicates in actual Datalog programs. Fact-defined predicates (or 

relations) are defined by listing all the combinations of values (the tuples) 

that make the predicate true. These correspond to base relations whose 

contents are stored in a database system. Figure shows the fact-defined 

predicates EMPLOYEE, MALE, FEMALE, DEPARTMENT, 

SUPERVISE, PROJECT, and WORKS_ON, which correspond to part of 

the relational database shown in Figure 4.1.5 Rule-defined predicates (or 

views) are defined by being the head (LHS) of one or more Datalog rules; 

they correspond to virtual relations whose contents can be inferred by the 

inference engine. 

 

Figure shows a number of rule-defined predicates. A program or a 

rule is said to be safe if it generates a finite set of facts. The general 
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theoretical problem of determining whether a set of rules is safe is un- 

decidable. 

 

However, one can determine the safety of restricted forms of rules. 

For example, the rules shown in Figure are safe. One situation where we get 

unsafe rules that can generate an infinite number of facts arises when one 

of the variables in the rule can range over an infinite domain of values, and 

that variable is not limited to ranging over a finite relation. For example, 

consider the following rule: 
 

Figure 6.1.5 Fact predicates for part of the database 
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Figure 6.1.6 Rule-defined predicates 

 
 

In this case, the rule is still theoretically safe. However, in Prolog 

or any other system that uses a top-down, depth-first inference mechanism, 

the rule creates an infinite loop, since we first search for a value for Y and 

then check whether it is a salary of an employee. The result is generation of 

an infinite number of Y values, even though these, after a certain point, 

cannot lead to a set of true RHS predicates. One definition of Datalog 

considers both rules to be safe, since it does not depend on a particular 

inference mechanism. Nonetheless, it is generally advisable to write such a 

rule in the safest form, with the predicates that restrict possible bindings of 

variables placed first. As another example of an unsafe rule, consider the 

following rule: 
 

Figure 6.1.6 Predicates for illustrating relational operations 
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Here, an infinite number of Y values can again be generated, since 

the variable Y appears only in the head of the rule and hence is not limited 

to a finite set of values. To define safe rules more formally, we use the 

concept of a limited variable. A variable X is limited in a rule if (1) it 

appears in a regular (not built-in) predicate in the body of the rule; (2) it 

appears in a predicate of the form X=c or c=X or (c1<<=X and X<=c2) in 

the rule body, where c, c1, and c2 are constant values; or (3) it appears in a 

predicate of the form X=Y or Y=X in the rule body, where Y is a limited 

variable. A rule is said to be safe if all its variables are limited. 
 

6.1.10 RECURSIVE QUERY WITH NEGATION 
 

 

Unfortunately, once set-difference is allowed in the body of a rule, 

there may be no least , model or least fixpoint for a program. Consider the 

following rules: 
 

 

These two rules can be thought of as an attempt to divide parts (those 

that are mentioned in the first column of the Assembly table) into two 

classes, Big and Small. The first rule defines Big to be the set of parts that 

use at least three copies of some subpart and are not classified as small 

parts. The second rule defines Small as the set of parts not classified as big 

parts. 

 

If we apply these rules to the instance of Assembly shown in Figure 

4.1.7, trike is the only part that uses at least three copies of same subpart. 

Should the tuple (trike) be in Big or Small? If we apply the first rule and 

then the second rule, this tuple is in Big. To apply the first rule, we consider 

the tuples in Assembly, choose those with Qty > 2 (which is just (trike)), 

discard those in the current instance of Srnal1 (both Big and Small are 

initially empty), and add the tuples that are left to Big. Therefore, an 

application of the first rule adds (trike) to Big. Proceeding similarly, we can 

see that if the second rule is applied before the first, (trike) is added to Small 

instead of Big. This program has two fixpoints, neither of which is smaller 

than the other, as shown in Figure 4.1.7. (The first fixpoint has a Big tuple 

that does not appear in the second fixpoint; therefore, it is not smaller than 

the second fixpoint. The second fixpoint has a small tuple that does not 

appear in the first fixpoint. Therefore it is not smaller than the first fixpoint. 

The order in which we apply the rules determines which fixpoint is 

computed; this situation is very unsatisfactory. We want users to be able to 

understand their queries without thinking out exactly how the evaluation 

proceeds. The root of the problerH is the use of NOT. When we apply the 

first rule, same inferences are disallowed because of the presence of tuples in 

small. 
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Figure 6.1.7 Two fix point for Big/Small program 

 

Parts that satisfy the other conditions in the body of the rule are 

candidates for addition to Big; we remove the parts in Small from this set 

of candidates. Thus some inferences that are possible if Small is empty (as 

it is before the second rule is applied) are disallowed if Small contains tuples 

(generated by applying the second rule before the first rule). Here is the 

difficulty: If NOT is used, the addition of tuples to a relation can disallow 

the inference of other tuples. Without NOT, this situation can never arise; 

the addition of tuples to a relation can never disallow the inference of other 

tuples. 
 

6.2 ACTIVE DATABASE 
 

 

Overcome the strict separation between application programs and DBS. 

• Usually only a small part of the real-world semantics can be modeled in 

the DBS. 

• Object-oriented DBS are not enough => add active (and deductive) 

mechanisms to model more semantics (especially dynamic behavior) of the 

applications in DBS. 
 

General Idea 
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In addition to the capabilities of passive database systems 

• monitor specified situations (events & conditions) in the database or its 

environment 

• invoke specified reactions whenever a situation occurs programs 

containing, e.g., database operations 
 

Definition: Active DBS 

 

An active database system (ADBS) is a DBS that monitors situations 

of interest and, when they occur, triggers an appropriate response in a 

timely manner. The desired behavior is expressed in production rules (also 

called event-condition-action rules), which are defined and stored in the 

DBS. This has the benefits that the rules can be shared by many application 

programs, and the DBS can optimize their implementation. 

 
 

6.2.1 LANGUAGES FOR RULE SPECIFICATION 
 

 

Rule Models and Languages 

• Event Specification 

• Condition Specification 

• Action Specification 

• Event-Condition-Action Binding 

• Rule Ordering 

• Rule Organization 

 

Affects data model and transaction management 
 

6.2.2 EVENTS 
 

 

⮚ An event is something that happens at a point in time. 

⮚ Possible alternatives: 

• structure operation(insert,update,access) 

• behavior invocation(the message display is sent to an object of 

type widget) 

• transaction(abort,commit,begin-transacttion) 
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• exception(an attempt to access some data without appropriate 
authorization) 

• clock(the first day of every month) 

• external(the temperature reading goes above 30 degrees) 

Production Rules (Event-Condition-Action Rules) 

 

 

 

 

 

 

 
 

⮚ Event Specification 

• relational DBS: define rule MonitorNewEmps on insert to 

employee 
if ... then ... 

 
• OODBS: define rule CheckRaise on employee.salary-raise() 

if ... then ... 

 
• rule triggered by data retrieval: define rule MonitorSalAccess on 

retrieve salary from employee 
if ... then ... 

 

⮚ Knowledge Model: Semantics of ECA Rules 
 

⮚ Knowledge Model: Semantics of ECA Rules – 2 
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⮚ Knowledge Model: Semantics of ECA Rules – 3 
 

 

6.2.3 CONDITIONS 
 

 

• The condition indicates whether rule action should be executed. 

• In ECA-rules, the condition is generally optional 

• Once the triggering event has occurred, the condition may be 

evaluated. If condition evaluates to be true, the rule action will be 
executed. 

• If no condition is specified, the action will be executed once the 
event occurs. 

• The condition part of a rule specifies a predicate or query over the 

data in the database. 

• The condition is satisfied if the predicate is true or if the query 

returns a nonempty answer. 

• Explicit events: condition may often be omitted (in which case it is 

always satisfied). 

• Transition conditions: allow to express conditions over changes in 

the database state. Example 
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6.2.4 ACTIONS 
 

⮚ The range of tasks that can be performed if the rule condition is 
evaluated to be true. 

⮚ It is usually a sequence of SQL statements. 

⮚ But actions may: 

• Perform some behavior invocation within the database or an 

external call 

• Inform the user or system administrator of some situation 

• Abort a transaction 

• Take some alternative course of action using do-instead 

The action part of a production rule specifies the operations to be 
performed when the rule is triggered and its condition is satisfied. 

 

 

6.3 XML AND DATABASE 
 

 

To understand XML, it is important to understand its roots as a 

document markup language. The term markup refers to anything in a 

document that is not intended to be part of the printed output. For example, 

a writer creating text that will eventually be typeset in a magazine may 

want to make notes about how the typesetting should be done. It would be 

important to type these notes in a way so that they could be distinguished 

from the actual content, so that a note like “set this word in large size, bold 

font” or “insert a line break here” does not end up printed in the magazine. 

Such notes convey extra information about the text. 

 

In electronic document processing, a markup language is a formal 

description of what part of the document is content, what part is markup, 

and what the markup means. Just as database systems evolved from physical 

file processing to provide a separate logical view, markup languages 

evolved from specifying instructions for how to print parts of the 

document to specifying the function of the content. For instance, with 

functional markup, text representing section headings (for this section, the 

word “Motivation”) would be marked up as being a section heading, instead 

of being marked up as text to be printed in large size, bold font. From the 

viewpoint of typesetting, such functional markup allows the document to be 

formatted differently in different situations. It also helps different parts of a 

large document, or different pages in a large Web site, to be formatted in a 

uniform manner. More importantly, functional markup also helps record 

what each part of the text represents semantically, and correspondingly 

helps automate extraction of key parts of documents. For the family of 

markup languages that includes HTML, SGML, and XML, 
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the markup takes the form of tags enclosed in angle brackets, <>. Tags are 

used in pairs, with <tag> and </tag> delimiting the beginning and the end 

of the portion of the document to which the tag refers. For example, the title 

of a document might be marked up as follows: 

 
Unlike HTML, XML does not prescribe the set of tags allowed, and 

the set may be chosen as needed by each application. This feature is the key 

to XML’s major role in data representation and exchange, whereas HTML 

is used primarily for document formatting. 

 
Figure 6.1.8 XML representation of (part of) university information. 

 

Figure 6.1.9 Continuation of Figure 



161  

For example, in our running university application, department, 

course and instructor information can be represented as part of an XML 

document as in Figures 4.1.8 and 4.1.9. Observe the use of tags such as 

department, course, instructor, and teaches. To keep the example short, we 

use a simplified version of the university schema that ignores section 

information for courses. We have also used the tag IID to denote the 

identifier of the instructor, for reasons we shall see later. 

 

These tags provide context for each value and allow the semantics 

of the value to be identified. For this example, the XML data representation 

does not provide any significant benefit over the traditional relational data 

representation; however, we use this example as our running example because of 

its simplicity. 

 
Figure 6.1.10 XML representation of a purchase order. 

 

Figure 6.1.10, which shows how information about a purchase order 

can be represented in XML, illustrates a more realistic use of XML. 

Purchase orders are typically generated by one organization and sent to 

another. Traditionally they were printed on paper by the purchaser and sent 

to the supplier; the data would be manually re-entered into a computer 

system by the supplier. This slow process can be greatly sped up by sending 

the information electronically between the purchaser and supplier. The 

nested representation allows all information in a purchase order to be 

represented naturally in a single document. (Real purchase orders have 

considerably more information than that depicted in this simplified 

example.) XML provides a standard way of tagging the data; the two 
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organizations must of course agree on what tags appear in the purchase 

order, and what they mean. 

 

Compared to storage of data in a relational database, the XML 

representation may be inefficient, since tag names are repeated throughout 

the document. However, in spite of this disadvantage, an XML 

representation has significant advantages when it is used to exchange data 

between organizations, and for storing complex structured information in 

files: 

 

First, the presence of the tags makes the message self- 

documenting; that is, a schema need not be consulted to understand the 

meaning of the text. We can readily read the fragment above, for example. 

 

Second, the format of the document is not rigid. For example, if 

some sender adds additional information, such as a tag last accessed noting 

the last date on which an account was accessed, the recipient of the XML 

data may simply ignore the tag. As another example, in Figure 4.1.10, the 

item with identifier SG2 has a tag called unit-of-measure specified, which 

the first item does not. 

 

The tag is required for items that are ordered by weight or volume, 

and may be omitted for items that are simply ordered by number. The ability 

to recognize and ignore unexpected tags allows the format of the data to 

evolve over time, without invalidating existing applications. 

 

Similarly, the ability to have multiple occurrences of the same tag makes it 

easy to represent multi valued attributes. 

 

Third, XML allows nested structures. The purchase order shown in 

Figure 6.1.10 illustrates the benefits of having a nested structure. Each 

purchase order has a purchaser and a list of items as two of its nested 

structures. Each item in turn has an item identifier, description and a price 

nested within it, while the purchaser has a name and address nested within 

it. Such information would have been split into multiple relations in a 

relational schema. Item information would have been stored in one relation, 

purchaser information in a second relation, purchase orders in a third, and 

the relationship between purchase orders, purchasers, and items would have 

been stored in a fourth relation. 

 

The relational representation helps to avoid redundancy; for example, item 

descriptions would be stored only once for each item identifier in a 

normalized relational schema. In the XML purchase order, however, the 

descriptions may be repeated in multiple purchase orders that order the same 

item. However, gathering all information related to a purchase order into a 

single nested structure, even at the cost of redundancy, is attractive when 

information has to be exchanged with external parties. 
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Finally, since the XML format is widely accepted, a wide variety of tools 

are available to assist in its processing, including programming language 

APIs to create and to read XML data, browser software, and database tools. 

 

6.3.1 STRUCTURE OF XML DATA 
 

 

The fundamental construct in an XML document is the element. An 

element is simply a pair of matching start- and end-tags and all the text that 

appears between them. 

 

XML documents must have a single root element that encompasses 

all other elements in the document. In the example in Figure, 

the<university>element forms the root element. Further, elements in an 

XML document must nest properly. For instance: 

 
is not properly nested. While proper nesting is an intuitive property, we may 

define it more formally. Text is said to appear in the context of an element 

if it appears between the start tag and end-tag of that element. Tags are 

properly nested if every start-tag has a unique matching end-tag that is in 

the context of the same parent element. 
 

Note that text may be mixed with the sub elements of an element, as 

in Figure. As with several other features of XML, this freedom makes more 

sense in a document-processing context than in a data-processing context, 

and is not particularly useful for representing more-structured data such as 

database content in XML. 

 

The ability to nest elements within other elements provides an 

alternative way to represent information. Figure shows a representation of 

part of the university information from Figure 6.1.10, but with course 

elements nested within department elements. The nested representation 

makes it easy to find all courses offered by a department. Similarly, 

identifiers of courses taught by an instructor are nested within the instructor 

elements. If an instructor teaches more than one course, there would be 

multiple course id elements within the corresponding instructor element. 

 
Figure 6.1.11 Mixture of text with sub elements. 
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Figure 6.1.12 Nested XML representation of university information. 

Details of instructors Brandt and Crick are omitted from Figure 4.1.12 for 

lack of space, but are similar in structure to that for Srinivasan. Although 

nested representations are natural in XML, they may lead to redundant 

storage of data. For example, suppose details of courses taught by an 

instructor are stored nested within the instructor element as shown in Figure. 

If a course is taught by more than one instructor, course information such 

as title, department, and credits would be stored redundantly with every 

instructor associated with the course. 
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Figure 6.1.13 Redundancy in nested XML representation. 

 

Nested representations are widely used in XML data interchange 

applications to avoid joins. For instance, a purchase order would store the 

full address of sender and receiver redundantly on multiple purchase orders, 

whereas a normalized representation may require a join of purchase order 

records with a company address relation to get address information. 

 

In addition to elements, XML specifies the notion of an attribute. 

For instance, the course identifier of a course can be represented as an 

attribute, as shown in Figure. The attributes of an element appear as 

name=value pairs before the closing “>” of a tag. Attributes are strings and 

do not contain markup. Furthermore, attributes can appear only once in a 

given tag, unlike sub elements, which may be repeated. 

 
Figure6.1.14 Use of attributes. 

Note that in a document construction context, the distinction 

between subelement and attribute is important an attribute is implicitly 

text that does not appear in the printed or displayed document. However, 

in database and data exchange applications of XML, this distinction is less 
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relevant, and the choice of representing data as an attribute or a subelement 

is frequently arbitrary. In general, it is advisable to use attributes only to 

represent identifiers, and to store all other data as subelements. 

 

One final syntactic note is that an element of the 

form<element></element> that contains no subelements or text can be 

abbreviated as <element/>; abbreviated elements may, however, contain 

attributes. Since XML documents are designed to be exchanged between 

applications, a namespace mechanism has been introduced to allow 

organizations to specify globally unique names to be used as element tags 

in documents. The idea of a namespace is to prepend each tag or attribute 

with a universal resource identifier (for example, a Web address). Thus, 

for example, if Yale University wanted to ensure that XML documents it 

created would not duplicate tags used by any business partner’s XML 

documents, it could prepend a unique identifier with a colon to each tag 

name. The university may use a Web URL such as: http://www.yale.edu 

as a unique identifier. Using long unique identifiers in every tag would be 

rather inconvenient, so the namespace standard provides a way to define 

an abbreviation for identifiers. 

 

In Figure, the root element (university) has an attribute xmlns:yale, 

which declares that yale is defined as an abbreviation for the URL given 

above. The abbreviation can then be used in various element tags, as 

illustrated in the figure. A document can have more than one namespace, 

declared as part of the root element. Different elements can then be 

associated with different namespaces. A default namespace can be defined 

by using the attribute xmlns instead of xmlns:yale in the root element. 

Elements without an explicit namespace prefix would then belong to the 

default namespace. 

 

Sometimes we need to store values containing tags without having the tags 

interpreted as XML tags. So that we can do so, XML allows this construct: 

 
Figure 6.1.15 Unique tag names can be assigned by using namespaces. 

 

Because it is enclosed within CDATA, the text <course> is treated 

as normal text data, not as a tag. The term CDATA stands for character data. 

http://www.yale.edu/
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6.3.2 XML DOCUMENT SCHEMA 
 

Databases have schemas, which are used to constrain what 

information can be stored in the database and to constrain the data types of 

the stored information. In contrast, by default, XML documents can be 

created without any associated schema: an element may then have any 

subelement or attribute. While such freedom may occasionally be 

acceptable given the self-describing nature of the data format, it is not 

generally useful when XML documents must be processed automatically 

as part of an application, or even when large amounts of related data are to 

be formatted in XML. 

 

Here, we describe the first schema-definition language included as 

part of the XML standard, the Document Type Definition, as well as its more 

recently defined replacement, XML Schema. Another XML schema- 

definition language called Relax NG is also in use, but we do not cover it 

here; for more information on Relax NG see the references in the 

bibliographical notes section. 
 

6.3.3 QUERYING AND TRANSFORMATION 
 

 

Given the increasing number of applications that use XML to exchange, 

mediate, and store data, tools for effective management of XML data are 

becoming increasingly important. In particular, tools for querying and 

transformation of XML data are essential to extract information from large 

bodies of XML data, and to convert data between different representations 

(schemas) in XML. Just as the output of a relational query is a relation, the 

output of an XML query can be an XML document. As a result, querying 

and transformation can be combined into a single tool. In this section, we 

describe the XPath and XQuery languages: 

 
• XPath is a language for path expressions and is actually a building 

block for XQuery. 

 
• XQuery is the standard language for querying XML data. It is 

modeled after SQL but is significantly different, since it has to deal 

with nested XML data. 

 
• XQuery also incorporates XPath expressions. 

 

The XSLT language is another language designed for transforming 

XML. However, it is used primarily in document-formatting applications, 

rather in data management applications. 
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6.4 INTRODUCTION TO MULTIMEDIA DATABASE 

SYSTEMS 
 

 

Multimedia databases provide features that allow users to store and 

query different types of multimedia information, which includes images 

(such as photos or drawings), video clips (such as movies, newsreels, or 

home videos), audio clips (such as songs, phone messages, or speeches), 

and documents (such as books or articles). The main types of database 

queries that are needed involve locating multimedia sources that contain 

certain objects of interest. For example, one may want to locate all video 

clips in a video database that include a certain person, say Michael Jackson. 

One may also want to retrieve video clips based on certain activities 

included in them, such as video clips where a soccer goal is scored by a 

certain player or team. The above types of queries are referred to as content-

based retrieval, because the multimedia source is being retrieved based on 

its containing certain objects or activities. Hence, a multimedia database 

must use some model to organize and index the multimedia sources based 

on their contents. Identifying the contents of multimedia sources is a 

difficult and time-consuming task. There are two main approaches. The first 

is based on automatic analysis of the multimedia sources to identify certain 

mathematical characteristics of their contents. This approach uses different 

techniques depending on the type of multimedia source (image, video, 

audio, or text). The second approach depends on manual identification of 

the objects and activities of interest in each multimedia source and on using 

this information to index the sources. This approach can be applied to all 

multimedia sources, but it requires a manual preprocessing phase where a 

person has to scan each multimedia source to identify and catalog the 

objects and activities it contains so that they can be used to index the 

sources. 

 

In the first part of this section, we will briefly discuss some of the 

characteristics of each type of multimedia source—images, video, audio, 

and text/documents. Then we will discuss approaches for automatic analysis 

of images followed by the problem of object recognition in images. We end 

this section with some remarks on analyzing audio sources. An image is 

typically stored either in raw form as a set of pixel or cell values, or in 

compressed form to save space. The image shape descriptor describes the 

geometric shape of the raw image, which is typically a rectangle of cells of 

a certain width and height. Hence, each image can be represented by an m 

by n grid of cells. Each cell contains a pixel value that describes the cell 

content. In black-and-white images, pixels can be one bit. In gray scale or 

color images, a pixel is multiple bits. Because images may require large 

amounts of space, they are often stored in compressed form. Compression 

standards, such as GIF, JPEG, or MPEG, use various mathematical 

transformations to reduce the number of cells stored but still maintain the 

main image characteristics. Applicable mathematical transforms include 

Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and 

wavelet transforms. To identify 
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objects of interest in an image, the image is typically divided into 

homogeneous segments using a homogeneity predicate. For example, in a 

color image, adjacent cells that have similar pixel values are grouped into 

a segment. The homogeneity predicate defines conditions for automatically 

grouping those cells. Segmentation and compression can hence identify the 

main characteristics of an image. 

 

A typical image database query would be to find images in the 

database that are similar to a given image. The given image could be an 

isolated segment that contains, say, a pattern of interest, and the query is to 

locate other images that contain that same pattern. There are two main 

techniques for this type of search. The first approach uses a distance 

function to compare the given image with the stored images and their 

segments. If the distance value returned is small, the probability of a match 

is high. Indexes can be created to group stored images that are close in the 

distance metric so as to limit the search space. The second approach, called 

the transformation approach, measures image similarity by having a 

small number of transformations that can change one image’s cells to match 

the other image. Transformations include rotations, translations, and 

scaling. Although the transformation approach is more general, it is also 

more time-consuming and difficult. A video source is typically represented 

as a sequence of frames, where each frame is a still image. However, rather 

than identifying the objects and activities in every individual frame, the 

video is divided into video segments, where each segment comprises a 

sequence of contiguous frames that includes the same objects/activities. 

Each segment is identified by its starting and ending frames. The objects 

and activities identified in each video segment can be used to index the 

segments. An indexing technique called frame segment trees has been 

proposed for video indexing. The index includes both objects, such as 

persons, houses, and cars, as well as activities, such as a person delivering 

a speech or two people talking. Videos are also often compressed using 

standards such as MPEG. Audio sources include stored recorded messages, 

such as speeches, class presentations, or even surveillance recordings of 

phone messages or conversations by law enforcement. Here, discrete 

transforms can be used to identify the main characteristics of a certain 

person’s voice in order to have similarity-based indexing and retrieval. 

 

A text/document source is basically the full text of some article, 

book, or magazine. These sources are typically indexed by identifying the 

keywords that appear in the text and their relative frequencies. However, 

filler words or common words called stopwords are eliminated from the 

process. Because there can be many keywords when attempting to index a 

collection of documents, techniques have been developed to reduce the 

number of keywords to those that are most relevant to the collection. A 

dimensionality reduction technique called singular value decompositions 

(SVD), which is based on matrix transformations, can be used for this 

purpose. An indexing technique called telescoping vector trees (TV-trees), 

can then be used to group similar documents. 
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6.4.1 LET US SUM UP 
 

Thus, we have studied basics of deductive database, datalog notation, clause 

form and horn clauses, safe datalog program etc. Also the active database 

with languages for rule specification and events, conditions, actions. Here 

with this spatial databases-clustering methods, storage methods are 

explained in this chapter. 
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6.4.3 UNIT END EXERCISES 
 

 

1) Explain Active Database with an example. 

 

2) Explain difference between structured, sem-structured and un- 

structured data in XML database. 

 

3) What are three main types of XML documents? What is the use of 

XML DTD? 

 

4) Explain deductive database in short. 

 

5) Explain datalog notation. 

 

6) Write a short note on Multimedia database system. 

 

❖❖❖❖ 
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